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Abstract
The goal of this paper is to train effective self-supervised
speaker representations without identity labels. We propose two
curriculum learning strategies within a self-supervised learning
framework. The first strategy aims to gradually increase the
number of speakers in the training phase by enlarging the used
portion of the train dataset. The second strategy applies various
data augmentations to more utterances within a mini-batch as
the training proceeds. A range of experiments conducted using
the DINO self-supervised framework on the VoxCeleb1 evalu-
ation protocol demonstrates the effectiveness of our proposed
curriculum learning strategies. We report a competitive equal
error rate of 4.47% with a single-phase training, and we also
demonstrate that the performance further improves to 1.84% by
fine-tuning on a small labelled dataset.
Index Terms: speaker verification, self-supervised learning,
curriculum learning

1. Introduction
Self-supervised learning (SSL) allows a model to map input
data to a representative latent space without requiring human-
annotated ground truth labels. Depending on the downstream
task, models trained using self-supervision can serve as a pre-
trained model or be used directly without further fine-tuning
process [1–4]. In both cases, its effectiveness is receiving atten-
tion, and various frameworks are being studied [5–8].

The speaker verification literature has also adopted SSL and
several works have been proposed [4, 9–15]. Specifically, few
studies employed a two-phase self-supervised learning strategy,
namely iterative clustering [3, 16]. The first phase includes
training the models via a SSL framework. The second phase re-
peats two steps until the performance converges to the intended
level. First, pseudo labels are generated using the trained model.
Second, the model is trained once again in a supervised classi-
fication manner, leveraging generated pseudo labels.

Throughout this study, we focus on improving the self-
supervised learning technique itself which involves randomly
initialised models. This line of research benefits the speaker
verification literature in several aspects. First, it adopts single-
phase training, saving a significant amount of time and does
not require the estimation of the number of clusters. Second, it
coincides with developing other domains (e.g., image, natural
language processing) where more advanced single-phase self-
supervised frameworks are being studied. Third, if required,
our model can serve as the initial model used for generating
pseudo labels in iterative clustering, as our work corresponds to
the first phase of it. Hence our improvements can complement
the iterative clustering methods.

Curriculum learning, which gradually trains a model in a

meaningful order, is widely adopted in diverse supervised learn-
ing tasks [17–19]. Even when the same dataset is used, training
with an adequately configured curriculum can boost the perfor-
mance of trained models. However, curriculum learning has not
been investigated in conjunction with SSL, leaving the poten-
tial open. We thus focus on curriculum learning [18]. Two cur-
riculum learning strategies for SSL that make the training more
challenging are designed: (i) gradually increasing the amount
of training data and (ii) gradually augmenting noise and rever-
beration to an increased proportion within each mini-batch. An
underlying assumption is that SSL speaker verification will also
benefit when the training becomes gradually difficult as it has
been the case for a few preceding studies in supervised learn-
ing [20].

We conduct experiments on speaker verification with the
ECAPA-TDNN model [21] under the DINO [22] SSL frame-
work. Results demonstrate that SSL can also benefit from cur-
riculum strategies. Both proposed curriculum learning tech-
niques were effective, where we observed up to 33% improve-
ment compared to a baseline. In addition, using models trained
with SSL, we further explore a semi-supervised scenario where
we fine-tune the model with a smaller set of data with labels.

The paper is organised as follows. Section 2 introduces
conventional curriculum learning. The adopted SSL framework
and model architecture, DINO, is addressed in Sections 3. The
proposed curriculum approach and techniques are addressed in
Section 4. Experiments and result analysis are presented in Sec-
tion 5. Section 6 analyses and interprets the operation of the
proposed technique in detail.

2. Curriculum learning
Curriculum learning, which defines the sequence of the training
from the easy settings to the hard ones, allows efficient train-
ing of deep neural networks. Several configurations have been
proved effective in the supervised learning field where perfor-
mance improvements were observed with no additional over-
head in terms of computations and resources [17, 18]. In [19],
the authors first trained the model under the text-dependent sce-
nario, then extended to text-independent. Here, it has been
shown that adjusting the training content through curriculum
learning could teach the model to handle different textual con-
tent as well as make it robust in various acoustic environments.
Other studies have also introduced methods of controlling train-
ing conditions. Specifically, when adopting the additive angular
margin loss function, increasing the margin as training proceeds
has become a common technique [20, 23]. As such, it has been
demonstrated that the curriculum learning applied to the train-
ing condition stabilised the training and improved the quality of
the model.
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3. Adopted SSL framework: DINO
DINO [22] is a self-distillation framework based on the mean
teacher [24] method, which was originally proposed for the
computer vision domain. This framework employs a “local-to-
global” distillation to guide the training of the student network.
Precisely, various types of cropped and augmented views are
constructed from an input, divided into local and global views
depending on the resolution or the amount of information con-
tained. Those with higher resolution or more information are
the global views. This framework aims to minimise the dif-
ference between the output features when different views are
digested by either the teacher or the student network. In particu-
lar, the student network digests all views, then outputs local and
global features, whereas the teacher network only digests global
views, extracting global features. Based on these two types of
features, a loss LD that penalises the difference between them
is defined and used to train the student network. The loss can
be described as:

LD = Σx∈{xg
1 ,x

g
2}Σx̂∈V

x̸̂=x
H(Pt(x), Ps(x̂)), (1)

where H(a, b) = −a log b, xg
i indicates the global view, V is

the set of views from an input and Pt(·) and Ps(·) are the output
distribution of teacher and student network, respectively. Dif-
ferent to the student which is trained with gradients, the teacher
network’s weight parameters are derived using an exponential
moving average of the student. In addition, sharpening and cen-
tring techniques are applied to the teacher output. The purpose
is to avoid model collapse which can easily occur in frameworks
that only utilise positive pairs, including DINO.

We adapt DINO for speaker verification with a few modi-
fications. Figure 1 illustrates the overall process of the DINO
framework adapted for speaker verification. First, we change
the global and local views to long and short crops of the same
utterance with different augmentations. In particular, we con-
struct two global views and five local views, resulting in seven
views from each input. For augmentation, we use reverberation
and noise from simulated RIRs and MUSAN datasets [25, 26].
Augmentation configurations follow that of [27]. Then, we con-
trol the sharpness of the student and teacher output distributions
by using temperatures of 0.1 and 0.04, respectively, where the
sharpness is controlled by dividing the output with temperature
values before applying the softmax function. The aforemen-
tioned adaptation enables the speaker verification model train-
ing with the DINO framework. We followed the original paper
for the other experimental configurations.

4. Proposed Approach
Existing curriculum learning strategies leverage the ground
truth label. However, these strategies are not applicable for SSL
because labels do not exist. Hence, we design two curriculum
strategies that can be adopted in SSL without the ground truth
label by increasing: (i) the size of the train set and (ii) the pro-
portion of utterances within each mini-batch where data aug-
mentation is applied. Both strategies tend to make the training
progressively challenging.

4.1. Data curriculum

Finding a speaker discriminant latent space becomes more dif-
ficult as the number of speakers to represent increases. We
wanted to gradually make the training more challenging by en-
larging the number of speakers in the training dataset. How-

Figure 1: Adapted DINO framework for speaker verification.
Utterances with different durations and augmentations are fed
instead of different-sized images. Local and global views are fed
into the student network (green line), while the teacher inputs
only global views (blue line).

ever, because labels do not exist in SSL, we could not manually
control the number of speakers. As an alternative, we assume
that the number of speakers in a dataset will increase propor-
tionally when the size of the dataset enlarges and therefore we
control the number of speakers by limiting the size of the train-
ing dataset. Although this assumption cannot be guaranteed, a
dataset that contains one million randomly collected utterances
is likely to have a greater number of speakers compared to a
dataset that contains one thousand utterances. In addition, in
Section 6, we show another alternative where we adopt k-means
clustering algorithm to select a subset of speakers’ utterances.

Three following curriculum courses are designed empiri-
cally and illustrated in Figure 2-(a) where it depicts the de-
tailed ratios of data used for each epoch. For example, in the
CL D2 strategy, we use the following dataset for training: Dur-
ing the first 16’th epochs, half of the dataset is used. From 17’th
to 32’nd epochs, 75% of the dataset is used. After the 32’nd
epoch, entire dataset is used. These curriculum courses are de-
signed considering that the learning rate is reset every 16 epochs
in stochastic gradient descent with warm restarts (SGDR) [28]
learning rate scheduler.

4.2. Data augmentation curriculum

We further propose a curriculum strategy which adjusts the fre-
quency of data augmentation to control how difficult the train-
ing would be. We design two curriculum courses of augmenta-
tion by gradually increasing the proportion of augmented utter-
ances within each mini-batch and illustrate specific curriculum
courses in Figure 2-(b). Note that the baseline augments all ut-
terances within a mini-batch from the beginning of the training
phase.

5. Experiments
We first present two sets of experiments: (i) demonstration of
the effectiveness of proposed two curriculum strategies and (ii)
fine-tuning the SSL-trained model with a small amount of la-
belled data (i.e., semi-supervised scenario). Then, we compare
our developed model’s performance with the recent literature.
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Figure 2: Curriculum courses. Note that CL D* stands for
Curriculum Learning on Dataset, which controls the amount
of dataset used. In a similar manner, in Curriculum Learning
on Augmentation (CL A*), we control the ratio of augmented
data. (a): three courses for exploiting different data portions
(CL D1, CL D2 and CL D3) (b): two courses for augmenting
a mini-batch (CL A1 and CL A2).

5.1. Dataset

Our experiments utilise the VoxCeleb1 and 2 datasets for train-
ing and evaluating the models [29–31]. We use the development
partition of the VoxCeleb2 dataset, which includes over a mil-
lion utterances from 5, 994 speakers, to train the model with
self-supervision, where we assume that the labels do not exist.
The widely adopted equal error rate (EER) is the primary metric
on the VoxCeleb1-O benchmark protocol.

For the experiment of fine-tuning phase, the development
partition of the VoxCeleb1 dataset which includes 148, 642 ut-
terances from 1, 211 speakers and CN-Celeb [32, 33] are used.
We fine-tune the pre-trained model and evaluate using the corre-
sponding test set using each data. CN-Celeb is a dataset consist-
ing of the voices of Chinese celebrities. Among the entire set,
we utilise CN-Celeb1, which includes 800 speakers for training
and 200 speakers for evaluation. Since CN-Celeb only com-
prises Chinese, it is valuable for evaluating the scenario where
SSL pre-training is done in another domain.

5.2. ECAPA-TDNN model

The model is based on the ECAPA-TDNN architecture that
operates on mel-frequency cepstral coefficients input [21]. It
comprises a 1-dimensional convolution block followed by three
Res2Net-based residual blocks with gradually increasing dila-
tion values where a squeeze-excitation module is applied after
each block. Up to the last residual block output, the sequence
length remains because both pooling layers and stride size big-
ger than one are not included. Three residual block outputs
are concatenated and fed to a convolution block. Then, a con-
text and channel-dependent statistical pooling layer aggregates

Table 1: Hyperparameters of the DINO framework.

Configuration Value
optimizer adam
initial learning rate 0.001
weight decay 5.00E-05
batch size 200
epoch 80

learning rate scheduler SGDR [28]
(restart period=16, decay=0.8)

Table 2: Results of self-supervised learning in EER (%) on the
VoxCeleb1 test set. ‘Base’ indicates the results from the DINO
framework without curriculum learning.

Base CL D1 CL D2 CL D3
Base 6.70 5.87 5.54 4.47
CL A1 6.35 6.08 5.10 4.69
CL A2 6.64 5.99 5.39 4.85

frame representations into a single utterance representation. Fi-
nally, an affine transform derives the speaker embedding.

5.3. Configurations

Table 1 describes the hyperparameters we use to train the model
with the DINO framework. For curriculum learning, we control
the difficulty of training following settings shown in Figure 2.
Since the curriculum strategies of augmentation and the data
partition are implemented independently, they can be applied
separately or together. When two different curricula are applied
simultaneously, the amount of data and the frequency of aug-
mentation decrease.

In the fine-tuning phase, the initial model is either ran-
domly initialised, pre-trained using the DINO framework, or
pre-trained via the DINO framework with proposed curriculum
learning strategies. The fine-tuning of the model is accom-
plished utilising an open-source trainer 1, with the following
modifications. We use additive angular margin loss to optimise
the model [27,34,35]. Most of the settings are used as the same
with self-supervised learning, but the total number of epochs
is reduced to 50, and the learning rate scheduler is changed to
SGDR without restart.

5.4. Results and Analysis

Self-supervised learning. Table 2 addresses the effect of the
two proposed curriculum learning strategies with the DINO
framework. Both curriculum strategies, regardless of combina-
tions, consistently outperform the baseline. However, although
both approaches are effective when applied alone, they were not
synergetic when applied simultaneously. The best performance
was observed when only data curriculum was applied, CL D3,
where it brought 30% improvement over the baseline. We inter-
pret these results that applying two kinds of curriculum at the
same time lowers the difficulty of training beyond our expecta-
tion.

Semi-supervised learning. Table 3 shows the results of fine-
tuning the best performing SSL-trained model, CL D3, with
two datasets. The first row reports the results from a ran-

1https://github.com/clovaai/voxceleb_trainer
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Table 3: Results of semi-supervised learning in EER (%) on the
VoxCeleb1 and CN-Celeb1 test set. Each model is fine-tuned by
using the corresponding development set.

Initial model VoxCeleb1 CN-Celeb1
No pretraining 2.32 12.46
DINO 1.98 10.98
DINO + CL 1.84 10.65

domly initialised model that is trained only using the small
labelled dataset. In both datasets, replacing the random ini-
tialised model to SSL-trained model improved the performance,
where 14.65% and 11.87% improvement were observed for
VoxCeleb1 and CN-Celeb1. By adopting the initial model
trained with SSL under proposed curriculum strategies, further
improvement was made, where 7% and 3% additional improve-
ment were achieved. Hence, we conclude that training in SSL
with the proposed curriculum strategies are also effective for
semi-supervised scenarios as well.

Comparison with recent literature. Table 4 compares the
proposed models with existing works that adopt various self-
supervision frameworks. Note that all these results show the
performances of initial training without the iterative clustering
step. First, we find that the mainstream of SSL in speaker ver-
ification is on its transition from contrastive-based [14–16, 36]
to DINO [37, 38], which only leverages positive pairs. Perfor-
mances differ in each study, but in general, DINO outperforms
contrastive-based approaches by a large margin. Among stud-
ies that adopt DINO, the performance of our baseline model
(6.70%) falls behind a bit. However, with the best-performing
curriculum learning strategy (DINO+CL), EER is further re-
duced to 4.47%, which is competitive. Furthermore, since
adapting DINO for speaker verification is subject to hyperpa-
rameter tuning, we argue that our improvements with curricu-
lum strategies will further improve the performance of [37, 38].

6. Discussion
6.1. Analysis

In SSL, it has been reported that rapidly increasing the repre-
sentation power of the model is crucial. This is more impor-
tant for SSL frameworks such as DINO, which relies entirely
on positive pairs because representation collapse occurs more
often. We analyse that this may be the reason why curriculum
learning was successful when applied to DINO SSL framework.
Our two curriculum learning strategies both initiates the train-

Figure 3: The proportion of speakers selected according to the
number of randomly selected clusters.

Table 4: Comparison with self-supervised learning models.
minDCF is calculated with Ptarget=0.05 and Cfalse alarm =
Cmiss=1.

Framework EER(%) minDCF
Huh et al. [14] AP+AAT 8.65 0.4540

Xia et al. [15] MOCO+Wav- 8.23 0.5900Aug(ProtoNCE)
Mun et al. [36] CEL 8.01 N/R
Tao et al. [16] Contrastive 7.36 N/R
Sang et al. [39] SSReg 6.99 0.4340
Han et al. [37] DINO 6.16 N/R
Cho et al. [38] DINO 4.83 N/R
Ours DINO 6.70 0.4116
Ours DINO+CL 4.47 0.3057

ing with easy samples. Therefore, the train loss can decrease
and the quality of supervision can improve more rapidly.

6.2. Ablation on CL D3

We conduct an ablation experiment to analyse which aspect
brought the success of CL D3 in Table 2. We hypothesised
that gradually increasing inter-speaker variance is the key, and
we design an experiment to validate this idea by removing the
inter-speaker factor and only increasing intra-speaker variance
over time. To do so, we use labels to ensure that although the
same proportion of the training data is fed to train, the number
of speakers are identical throughout the whole training phase2.
This experiment resulted in an EER of 6.41%, which is close to
the EER of 6.70% from DINO without curriculum. We hence
conclude that limiting inter-speaker variance at the initial phase
of training is crucial to success.

6.3. Additional method for controlling the number of
speakers

With the results of Section 6.2, a new concern can be made: the
proposed data curriculum strategy may not hold if the number
of speakers do not increase as the amount of collected data in-
crease. To account for such scenarios, we additionally demon-
strate an alternative approach. A simple k-means clustering
with given number of clusters is first adopted to group the train
dataset. Then, we select a proportion of clusters according to
the curriculum strategy. Figure 3 shows the experimental re-
sults. Regardless of the number of total clusters we set, we
could successfully control and increase the number of speakers
by choosing more clusters. Based on this result, we conclude
that even in the case where random selection of more data does
not lead to the involvement of more speakers in the train dataset,
we can apply a k-means algorithm alternatively and control the
number of speakers. Note that label information is not required
for this process.

7. Conclusion
In this paper, we proposed two curriculum learning strategies
for self-supervised speaker recognition. The two strategies both
demonstrated consistent improvements across a diverse range
of experimental settings. We also showed that the proposed
methods are valid in a semi-supervised scenario. In addition,
in-depth analyses regarding the proposed curriculum strategies
have been conducted.

2Labels are utilised for analysis purpose only.
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supervised speaker recognition with loss-gated learning,” in Proc.
ICASSP, 2022, pp. 6142–6146.

[17] P. Soviany, R. T. Ionescu, P. Rota, and N. Sebe, “Curriculum learn-
ing: A survey,” arXiv preprint arXiv:2101.10382, 2021.

[18] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proc. ICML, 2009, pp. 41–48.

[19] E. Marchi, S. Shum, K. Hwang, S. Kajarekar, S. Sigtia,
H. Richards, R. Haynes, Y. Kim, and J. Bridle, “Generalised dis-
criminative transform via curriculum learning for speaker recog-
nition,” in Proc. ICASSP. IEEE, 2018, pp. 5324–5328.

[20] J. S. Chung, J. Huh, S. Mun, M. Lee, H.-S. Heo, S. Choe, C. Ham,
S. Jung, B.-J. Lee, and I. Han, “In defence of metric learning for
speaker recognition,” in Proc. Interspeech, 2020, pp. 2977–2981.

[21] B. Desplanques, J. Thienpondt, and K. Demuynck, “Ecapa-tdnn:
Emphasized channel attention, propagation and aggregation in
tdnn based speaker verification,” in Proc. Interspeech, 2020, pp.
1–5.

[22] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bo-
janowski, and A. Joulin, “Emerging properties in self-supervised
vision transformers,” in Proc. ICCV, 2021, pp. 9650–9660.

[23] Y. Huang, Y. Wang, Y. Tai, X. Liu, P. Shen, S. Li, J. Li, and
F. Huang, “Curricularface: adaptive curriculum learning loss for
deep face recognition,” in Proc. CVPR, 2020, pp. 5901–5910.

[24] A. Tarvainen and H. Valpola, “Mean teachers are better role
models: Weight-averaged consistency targets improve semi-
supervised deep learning results,” Proc. NeurIPS, vol. 30, 2017.

[25] T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur,
“A study on data augmentation of reverberant speech for robust
speech recognition,” in Proc. ICASSP. IEEE, 2017, pp. 5220–
5224.

[26] D. Snyder, G. Chen, and D. Povey, “MUSAN: A Music, Speech,
and Noise Corpus,” arXiv, 10 2015.

[27] H. S. Heo, B.-J. Lee, J. Huh, and J. S. Chung, “Clova baseline sys-
tem for the voxceleb speaker recognition challenge 2020,” arXiv
preprint arXiv:2009.14153, 2020.

[28] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent
with warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

[29] A. Nagrani, J. S. Chung, W. Xie, and A. Zisserman, “Voxceleb:
Large-scale speaker verification in the wild,” Computer Science
and Language, 2019.

[30] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-
scale speaker identification dataset,” in Proc. Interspeech, 2017.

[31] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep
speaker recognition,” in Proc. Interspeech, 2018, pp. 1086–1090.

[32] Y. Fan, J. Kang, L. Li, K. Li, H. Chen, S. Cheng, P. Zhang,
Z. Zhou, Y. Cai, and D. Wang, “Cn-celeb: a challenging chinese
speaker recognition dataset,” in Proc. ICASSP. IEEE, 2020, pp.
7604–7608.

[33] L. Li, R. Liu, J. Kang, Y. Fan, H. Cui, Y. Cai, R. Vipperla, T. F.
Zheng, and D. Wang, “Cn-celeb: multi-genre speaker recogni-
tion,” Speech Communication, 2022.

[34] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive
angular margin loss for deep face recognition,” in Proc. CVPR,
2019, pp. 4690–4699.

[35] Y. Liu, L. He, and J. Liu, “Large margin softmax loss for speaker
verification,” in Proc. Interspeech, 2019, pp. 2873–2877.

[36] S. H. Mun, W. H. Kang, M. H. Han, and N. S. Kim, “Unsu-
pervised representation learning for speaker recognition via con-
trastive equilibrium learning,” arXiv preprint:2010.11433, 2020.

[37] B. Han, Z. Chen, and Y. Qian, “Self-supervised speaker verifica-
tion using dynamic loss-gate and label correction,” in Proc. Inter-
speech, 2022.
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