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ABSTRACT
The objective of this study is to investigate the learning

process of Visually Grounded Speech (VGS) models through joint
learning that combines contrastive learning and masked image
modeling. Typically, VGS models aim to establish audio-visual
alignment between images and their spoken captions within a
contrastive learning framework. Building upon this seminal
concept, in this work, we explore whether visual reconstruction
with the help of cross-modality can enhance alignment, given
that spoken captions describe visual appearances. To achieve
this, we extend the contrastive learning-based VGS models by
incorporating a masked autoencoder that utilizes cross-attention in
the decoder. Through this cross-modal interaction in the decoder,
spoken caption features guide the model to reconstruct the masked
patches and capture correspondence between the two modalities.
Our findings suggest that integrating cross-modal reconstruction
within the contrastive learning framework enhances audio-visual
feature alignment. Consequently, our proposed method gives
comparable performance to existing models that utilize prior
knowledge or other modalities, such as object region proposals
or Contrastive Language-Image Pretraining (CLIP).

Index Terms— Visually Grounded Speech, Self-supervised
Learning, Masked Autoencoder, Contrastive Learning

1. INTRODUCTION

Infants initially struggle to connect spoken words with objects but
gradually learn through repeated exposure to unsegmented visuals
and sounds. This process forms the basis for Visually Grounded
Speech (VGS) models, which aim to replicate this learning mech-
anism. VGS models establish semantic relationships between
words and visual representations, mimicking how infants acquire
language.

VGS models establish feature alignment between two modal-
ities: spoken caption and paired images, without relying on text
information. Prior research [1, 2, 3, 4, 5, 6] have guided models
to understand semantic information from spoken utterances,
using visual information as a supervisory signal, and to learn the
shared feature space. Such models build visual-spoken language
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Fig. 1. Speech-Guided Masked Image Modeling (MIM) assists
the model to enhance the audio-visual correspondence for Visually
Grounded Speech (VGS).

understanding without necessitating text-level annotation. VGS
research has focused on the correspondence between speech and
image modalities. In this domain, the predominant approach
has been contrastive learning [2]. Previous studies enhance their
models using either off-the-shelf object detector [7] or Contrastive
Language-Image Pretrained (CLIP) models [8]. Earlier research
leverage visual signals to employ the spoken utterance encoder
for various tasks, such as subword detection [9], image caption-
ing [10], and zero-shot speech segmentation [6]. A different
research trajectory examines VGS in the context of multilingual
spoken language learning, with the goal of aligning features across
diverse languages. [11, 12]

As an essential characteristic of VGS, the model learns the
audio-visual correspondence in a self-supervised manner. Given
this, it is natural to explore another stream of self-supervised
training: masked image modeling (MIM). In the vision-language
field, which is closely related to VGS and distinguished by the
use of either spoken or written language form, studies investi-
gate whether MIM is beneficial for contrastive language-image
pretraining. These studies integrate contrastive loss with masked
language modeling, adopt masked self-distillation [13], or employ
cross-modal reconstruction [14]. Given this context, it is pertinent
to question if these approaches remain effective for spoken cap-
tions, which are more continuous and less explicitly formed than
the text. To address this, we introduce a method that combines
Speech-Guided MIM and contrastive learning for VGS, where
the spoken utterance features assist the model in reconstructing
the masked patches.

In this paper, we investigate the potential of cross-modal recon-
struction in contrastive learning for VGS. As illustrated in Figure 1,
our learning process is divided into two parts: Contrastive Learn-
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Fig. 2. Comparison between contrastive learning and the
proposed method. Our approach exploits the correspondence
between images and spoken captions using a cross-modal decoder
together with Masked Image Modeling (MIM).

ing and Speech-Guided MIM. For contrastive learning, we extract
audio and full image features using the audio encoder and image
encoder, respectively. Concurrently, we mask a large portion of
the image and subsequently extract features from this masked
image. The cross-modal decoder then takes over to reconstruct
the masked patches, using the spoken utterance feature to guide
the reconstruction of the masked region. Under the guidance of
cross-modal reconstruction, we demonstrate that our model gives
on-par or better performance than existing benchmarks, including
those that utilize additional prior knowledge.

2. APPROACH

An overview of our approach is depicted in Figure 2. Our design
integrates the contrastive learning-based VGS model with MIM,
targeting enhanced alignment within the audio-visual feature space.
The subsequent section provides details on the training process.

2.1. Preliminaries
Our proposed model comprises four primary components: an im-
age encoder EI(·;θI), an audio encoder EA(·;θA), a cross-modal
decoder DM(·;θM), and a momentum image encoder ĒI(·;θ̄I).
The momentum encoder’s parameters, θ̄I , are updated via θ̄I =
αθ̄I+(1−α)θI , where α denotes the momentum coefficient. All
these components are based on the transformer architecture [15].

For a given image-spoken caption pair, (I,A), the input image
is defined as I ∈ RH×W×C, where H, W , and C represent
the image’s height, width, and number of channels, respectively.
We partition I into N non-overlapping patches, expressed as
I={i1,...,iN}, with each feature vector in∈RP2C. Here, N is
calculated as H×W/P2, and P indicates the height and width
of each patch. The input audio A, initially a raw waveform, is
transformed into a set of feature vectors, A={a1,...,aT}, using
a convolutional block of EA. Both feature vector sets, I and A,
are augmented with a [CLS] token and subsequently processed
by the image encoders EI and audio encoder EA, respectively:

Fig. 3. Illustration of attention weights allocated to each frame by
the [CLS] token, derived from the last layer of the audio encoder.
Each color in the figure represents a different attention head.

EI(I)=ZI={zIcls,zI1,zI2,...,zIN}
EA(A)=ZA={zAcls,zA1 ,zA2 ,...,zAT }.

(1)

For image reconstruction, we sample the set of masked patch
indices, M, resulting in Im={ik |k∈M} and Iv={ik |k /∈M}.

2.2. Training
We present the two distinct components of our methods: Con-
trastive Learning and Speech-Guided MIM.

Contrastive Learning. The alignment between spoken captions
and image features comes from assigning the paired features close
to each other. The prevailing trend in the VGS field establishes the
alignment within the framework of contrastive learning. We input
the mean feature of ZI and zAcls into their respective projection
layers, yielding global representations denoted as zI and zA.
Subsequently, the inner product of these global representations is
computed to derive a similarity score. The objective is to amplify
this score for spoken caption-image pairs. We use InfoNCE [16]
loss as our contrastive loss function LNCE defined as:
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(2)

where, B denotes the number of image-spoken caption pairs
present in a mini-batch.

Speech-Guided Masked Image Modeling. The Speech-Guided
Masked Image Modeling (MIM) learns the representation through
the reconstruction of the masked visual tokens with the help of
spoken features. The spoken caption involves in the MIM through
the interaction of cross-attention in the cross-modal decoder. As
the image-spoken caption pair datasets consist of the image and
the spoken caption that describes the visual scene, the natural
correspondence in the cross-modalities are guaranteed.

In the reconstruction process, the output feature of the audio
encoder, denoted as ZA, is input into the cross-modal decoder
DM . This decoder is characterized by its cross-attention layer,
where ZA plays a pivotal role, serving as both the key and
value. This setup enables an interaction between audio and visual
features in the cross-attention mechanism. Given that audio
features can include semantically redundant elements, which are
not beneficial for reconstruction, it is essential to filter and pass



only the semantically significant parts to DM . To facilitate this,
we utilize the attention weights W of the [CLS] token across
each temporal frame from the last layer of the audio encoder, as
depicted in Figure 3 and outlined in [6]. By performing matrix
multiplication of {zA1 ,zA2 ,...,zAT } with these attention weights, we
generate summarized speech features whose length matches the
number of heads in the transformer layer as:

ZA
summarized=W ·{zA1 ,zA2 ,...,zAT }. (3)

During the masking phase, we randomly select the masked
patch indices, denoted as M. The image encoder EI , which
shares parameters with the contrastive learning component, is fed
only the unmasked visual tokens, Iv. Subsequently, the cross-
modal decoder DM processes these visible image features along
with the summarized speech features. In line with the approach
in [13], our reconstruction goal is to replicate the features created
by the momentum encoder ĒI , utilizing the entire image. We
employ Mean Square Error (MSE) as the loss function in our
MIM for optimization:

DM(EI(Iv),Z
A
summarized)={zR1 ,zR2 ,...,zRN}

ĒI(I)={z̄I1,z̄I2,...,z̄IN}

LMIM =− 1

|M|
∑
k∈M

∥∥z̄Ik−zRk
∥∥2
2
.

(4)

Our learning objective with Speech-Guided MIM is formu-
lated as follows:

L=LNCE+λLMIM , (5)

where λ represents the weight for LMIM .

3. EXPERIMENTS
3.1. Datasets
We employ three primary datasets for training and testing our
models: Places Audio [17], Flickr8K Audio Captions Corpus [1]
(FACC), and SpokenCOCO [10]. All these datasets comprise
pairs of images and their corresponding spoken captions. The
Places Audio dataset offers 400K pairs, where captions were spon-
taneously recorded by annotators as they viewed the associated
image, and for our experiments, we use the “2020” splits. Spoken-
COCO provides 123K images, each paired with 5 unique spoken
captions derived from the text captions of the MSCOCO [18]
dataset; for this dataset, we follow the Karpathy split as outlined
in [6]. Lastly, FACC contains 8K images and each image is paired
with 5 distinct spoken captions which originates from Flickr8K’s
text captions. For the evaluation, we use the standard train and
test splits.

3.2. Implementation Details
For the image encoder EI , we employ the ViT-B/16 architecture
as described in [20]. This consists of a 12-layer transformer with
a width of 768 and 12 attention heads. We leverage pre-trained
weights from [21]. The momentum encoder ĒI has the identical
architecture of the image encoder. The cross-modal decoder DM

incorporates a single cross-attention layer, which is composed of

cross-attention, self-attention, and a feed-forward layer. Our audio
encoder’s design and initial weights are derived from HuBERT
Base [22]. Following the approach in [7], we reinitialize the
last 3 layers of the pretrained HuBERT. This encoder contains
a 7-layer convolutional block and a 12-layer transformer, with a
width of 768 and 12 attention heads similar to [20]. We project
the global representations from each modality using projection
layers, each being a linear layer with an output dimension of 768.
We use the BertAdam [23] optimizer with an initial learning rate
of 0 that linearly increases to 5× 10−6 during the initial 10%
of training process. Subsequently, the learning rate decays to 0
in line with VG-HuBERT [7]. The momentum coefficient α is
gradually increased from 0.999 to 1 following a cosine scheduler.
For data augmentation, images are cropped to a size of 224 x 224,
and RandAugment [24] is applied. In alignment with MAE [21],
we set a masking ratio of 75%. Training is conducted with a batch
size of 100 over 30 epochs for SpokenCOCO, 30 epochs with
a batch size of 80 for Places Audio, and 20 epochs with a batch
size of 100 for FACC. We introduce the reconstruction loss after
3 epochs, setting its weight λ at 2.0.

3.3. Baselines
Before presenting the quantitative results of the comparison with
other existing works and closely-related baselines, we introduce
the details of these baselines below:
VG-HuBERT [6]: The architecture of VG-HuBERT corresponds
to model (a) in Figure 2, employing contrastive learning as its
objective function. The image encoder is based on ViT-S/8 and
inherits its weights from DINO [25]. Meanwhile, the audio
encoder uses the structure and weights of the HuBERT Base.
FaST-VGS [7]: This model incorporates a region proposal
network before the image encoder transformer, processing the
detected regions instead of the entire image. FaST-VGS adopts a
coarse-to-fine approach through both feature-wise inner products
and a cross-modal encoder. For a fair comparison, we restrict our
evaluation to the model’s coarse retrieval performance, specifically
considering the retrieval score based on inner product.
SpeechCLIP [8]: SpeechCLIP is a model that leverages the
well-organized Contrastive Language-Image Pretrain (CLIP)
image encoder which is trained on large-scale image-text dataset.
VG-HuBERT (M): This architecture closely follows that of VG-
HuBERT, with a notable exception in the image encoder. Given
that ViT-S/8 is not feasible when incorporating the additional
component, we opt for the ViT-B/16. We initialize this encoder
with pre-trained weights from MAE [21], where M stands for
MAE image encoder. We note that our proposed method utilizes
the cross-modal decoder on top of this model.

3.4. Quantitative Results
In this section, we provide comparison with our method and
previous approaches introduced in Section 3.3 in three different
dataset and ablation study.

Comparing our methods with existing baselines. This section
discusses the performance of our method in comparison with
previous methods. As demonstrated in Table 1 and Table 2,



Table 1. Quantitative results on Places Audio test-seen and test-unseen. All models are trained on Places train set. † denotes a model
which employs prior knowledge.

Places Audio (test-seen) Places Audio (test-unseen)

A → I I → A A → I I → A

Model R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
ResDAVEnet[2] 35.2 67.5 78.0 30.4 63.1 74.1 38.3 68.5 78.8 31.2 65.0 75.4
MILAN[19] 58.4 84.6 90.6 53.8 83.4 90.1 62.1 86.0 90.5 58.2 85.8 90.9
FaST-VGS[7]† 60.0 86.1 92.3 60.2 85.1 92.2 62.8 88.4 92.9 62.3 89.0 93.2

VG-HuBERT (M) 60.4 86.9 92.1 59.3 87.0 92.6 63.8 89.1 93.6 63.6 88.3 93.2
Ours 62.5 88.0 93.7 61.3 87.8 93.5 67.4 89.5 94.5 64.6 89.7 93.9

Table 2. Quantitative results on SpokenCOCO test sets. All
models are trained on SpokenCOCO train set. † denotes a model
which uses prior knowledge.

A → I I → A

Method R@1 R@5 R@10 R@1 R@5 R@10

SpokenCOCO (test)

ResDAVEnet[2] 17.3 41.9 55.0 22.0 50.6 65.2
VG-HuBERT[6] 30.6 60.8 72.8 42.8 73.5 83.9
FaST-VGS[7]† 31.8 62.5 75.0 42.5 73.7 84.9

VG-HuBERT (M) 30.6 60.5 72.7 42.2 74.1 84.1
Ours 32.2 62.8 74.8 45.5 75.8 85.9

Table 3. Quantitative results on FACC test sets. All models are
trained on FACC train set. † denotes a model which utilizes prior
knowledge or other modality.

A → I I → A

Method R@1 R@5 R@10 R@1 R@5 R@10

FaST-VGS [7]† 26.6 56.4 68.8 36.2 66.1 76.5
SpeechCLIP [8]† 26.7 57.1 70.0 41.3 73.9 84.2

VG-HuBERT (M) 25.9 54.9 68.1 36.1 66.8 78.8
Ours 27.4 56.9 69.5 36.7 67.6 79.5

Table 4. Ablation study results on Places Audio test-seen and
test-unseen. All models are trained on Places train set. Here,
R@1, R@5, and R@10 represent the average recall rates for
image-to-audio and audio-to-image retrieval tasks.

test-seen test-unseen

Method R@1 R@5 R@10 R@1 R@5 R@10

VG-HuBERT (M) 59.9 86.9 92.3 63.7 88.7 93.4
+ Recon 60.7 87.0 91.7 65.5 89.3 93.3
+ Speech-Guided 61.1 87.5 92.1 64.9 88.3 93.2
+ Summary (Ours) 61.9 87.9 93.6 66.0 89.6 94.2

our method show better performance, achieving state-of-the-art
results on both the Places Audio and SpokenCOCO datasets.
Specifically, on the Places Audio test-seen and test-unseen splits,
our method consistently outperforms existing methods across all
metrics (R@1, R@5, R@10), for both Audio to Image (A →
I) and Image to Audio (I → A) retrieval tasks. Similarly, in the
SpokenCOCO test sets, our approach surpasses other methods,
demonstrating its robustness and effectiveness in varied settings.
Our methods consistently demonstrate superior performance

compared to VG-HuBERT (M) and FaST-VGS across different
datasets. Notably, FaST-VGS relies on an off-the-shelf object
detector, contributing to its performance; however, our method
achieves the results without such reliance on prior knowledge.

In the context of the FACC dataset, as shown in Table 3,
SpeechCLIP outperforms ours. We attribute this to the small size
of the FACC dataset, where SpeechCLIP benefits significantly
from leveraging a powerful vision-language foundation model.

Ablation study on different reconstruction strategies. Our
ablation study, summarized in Table 4, evaluates the contributions
of different components on the Places Audio test-seen and test-
unseen datasets. The study compares the baseline VG-HuBERT
(M) model with incremental enhancements: the addition of
reconstruction (+ Recon), speech guidance (+ Speech guided),
and our complete model with audio summarization (+ Summary).

The results indicate that each component incrementally im-
proves the model. The addition of reconstruction (+ Recon)
delivers an initial enhancement over the baseline VG-HuBERT
(M), especially in test-unseen scenarios. The incorporation of
speech guidance (+ Speech-Guided) also contributes to retrieval
performance, but its impact is more subtle. While certain metrics
show a slight increase, the overall advancement is moderate.
However, the most significant improvement is observed with
the introduction of audio summarization (+ Summary). This en-
hancement is evident in both test-seen and test-unseen scenarios,
surpassing the VG-HuBERT (M) model. This suggests that se-
lectively passing semantically significant parts to the cross-modal
decoder, a process achieved through our audio summarization
technique, effectively leverages Speech-Guided MIM.

4. CONCLUSION

In this paper, we focus on enhancing the audio-visual alignment
with the motivation of visual reconstruction with the spoken
utterances, as they contain the visual descriptions. We propose
a model that combines Contrastive Learning with Speech-Guided
MIM, where cross-modal interaction is also utilized in the decoder
for reconstruction. Our experiments demonstrate on-par or better
performance than existing benchmarks, including those that utilize
additional prior knowledge. We believe that our proposed method,
which utilizes MIM, introduces a new perspective to VGS-based
models and will be beneficial to the community by paving the
way for new directions.
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