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Abstract—Automated audio captioning is a task that generates
textual descriptions for audio content, and recent studies have
explored using visual information to enhance captioning quality.
However, current methods often fail to effectively fuse audio and
visual data, missing important semantic cues from each modality.
To address this, we introduce LAVCap, a large language model
(LLM)-based audio-visual captioning framework that effectively
integrates visual information with audio to improve audio cap-
tioning performance. LAVCap employs an optimal transport-
based alignment loss to bridge the modality gap between audio
and visual features, enabling more effective semantic extraction.
Additionally, we propose an optimal transport attention module
that enhances audio-visual fusion using an optimal transport
assignment map. Combined with the optimal training strategy,
experimental results demonstrate that each component of our
framework is effective. LAVCap outperforms existing state-of-
the-art methods on the AudioCaps dataset, without relying on
large datasets or post-processing. Code is available at https:
//github.com/NAVER-INTEL-Co-Lab/gaudi-lavcap.

Index Terms—multimodal captioning, LLM, optimal transport

I. INTRODUCTION

Automated audio captioning (AAC) is a task that aims
to generate textual descriptions of a given audio input. In
contrast to audio tagging and sound event classification tasks
that focus on understanding low-level sound characteristics,
AAC also requires a comprehension of high-level semantics
contained in the audio. It has recently garnered significant
attention from the deep learning community due to its wide
range of applications, such as providing audio descriptions for
broadcasts and movies, text query-based audio retrieval, and
developing more human-like conversational Al systems [1].

Most recent works [2]-[9] for AAC adopt the encoder-
decoder framework and have explored different architectures.
They utilize various audio encoders [10]-[14] to extract se-
mantically rich acoustic features. Pre-trained language models
are used as text decoders because of their sequence modeling
and text generation capabilities. In particular, some recent
works [4], [8] leverage LLMs for their strong ability to
understand contexts and generate text sequences.

Recently, several studies [15], [16] have incorporated visual
modality to improve audio captioning. Visual information
helps distinguish sounds in complex scenes. For example,
when a man speaks while drilling, visual cues clarify the
presence of both elements, allowing for generating more
accurate captions.

*These authors contributed equally to this work.

To this end, we introduce LAVCap, an LLM-based Audio-
Visual Captioning framework. This work focuses on explor-
ing various audio-visual fusion methods and identifying the
optimal training strategy for the LLM-based audio-visual cap-
tioning framework. First, we find out that naively combining
visual features with audio features does not enable the LLM
to take full advantage of the visual information. We attribute
this shortfall to the significant modality gap between audio
and visual feature spaces.

To bridge the modality gap, we consider the alignment of
audio and visual tokens as an optimal transport (OT) problem.
While previous work [17] applies OT algorithms to align video
and text, this study pioneers their application to audio-visual
alignment. Specifically, we introduce an optimal transport-
based alignment loss (OT loss) tailored for this purpose.

OT loss encourages the encoders to extract features that are
rich in semantics while ensuring that they are well-aligned.
In addition, our experiment reveals that the existing cross-
attention mechanism [15] struggles to integrate cross-modal
features effectively. To tackle this, we propose an optimal
transport attention module (OT-Aft) that leverages the OT
assignment map as attention weights for audio-visual fusion.
This approach provides more effective fusion compared to
other audio-visual fusion methods.

Experimental results demonstrate that LAVCap outperforms
previous state-of-the-art methods on the AudioCaps bench-
mark, without pre-training the model on large datasets or ap-
plying post-processing to generated captions. It is noteworthy
that our approach achieves such high performance although the
ground-truth captions in AudioCaps are audio-centric. Further-
more, our user study shows that LAVCap obtains mean opinion
scores (MOS) even higher than the ground-truth captions. This
underscores the importance of utilizing the visual modality to
distinguish the various sounds and understand the scene.

The main contributions of this work are summarized as
follows:

e We present LAVCap, an LLM-based audio-visual cap-
tioning framework that leverages visual information to
complement audio modality in audio captioning tasks.

+ We employ optimal transport for effectively bridging the
modality gap and fusing audio-visual features.

o Our approach outperforms existing state-of-the-art meth-
ods on AudioCaps without the need for pre-training the
model on large datasets or applying post-processing.
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Fig. 1. (a) Overview of the proposed LAVCap Framework. (b) Detail of the Optimal Transport Fusion module.

II. METHOD

The overall architecture of LAVCap is illustrated in Fig. 1.
Each component of our framework and the training objectives
are explained in detail in the following sections.

A. Audio-Visual Encoding

Given an audio-visual input pair (z,, x,), the audio encoder
E, and the visual encoder F, encode them into modality-
specific features with C' dimensions as follows:

ha = Ea(xa)v hy = Ev(xv) (D

where h, € RN«XC h, c RNv*C represent the audio and
visual features, respectively, with N, and N, denoting the
number of tokens for audio-visual features.

B. Audio-Visual Alignment Based on Optimal Transport

To effectively bridge the modality gap, we apply OT loss
to align the audio-visual features. First of all, we compute
the similarity matrix S € RY«*Nv of audio and visual
features. Similar to the prior work [17], we optimize the audio-
visual assignment map Q € RN«*Nv to maximize the global
similarity between the cross-modal features:

T
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where 1y, 1y, denotes the vector of ones in dimension
N, and N,. H(Q) is an entropy regularization term with e
controlling the smoothness. Then the optimal solution Q* is
obtained by iterative Sinkhorn-Knopp algorithm [18]:

Q*
where p and v are the non-negative scaling vectors.

Based on the optimal solution Q* and the similarity matrix
S, OT loss is computed as follows:

= Diag(p)exp(S/€)Diag(v) (€ RY, v e R™) (3)
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where {q" }l r, {s7"} N7 denote the row vectors of Q and
S when m = a, and the column vectors when m = w.
OT loss encourages maximizing the similarity between audio-
visual token sequences within a sample, rather than between
averaged features in a mini-batch. This provides more fine-
grained supervision and thus a more effective way to align
the cross-modal features.

C. Audio-Visual Fusion and Projection

In addition to using the optimal transport assignment map
for loss computation, we also employ it for the fusion of
audio-visual features. We refer to this fusion module as OT-
Att module in Eq. 5. OT-Att module operates similarly to the
conventional cross-attention but utilizes the optimal transport
assignment map as the attention weight. The visually-attended
audio feature and audio-attended visual feature are computed
as follows:

ho = OT-Att(h,, Q*, hy) = ha + Q*hy
hy = OT-Att(hy, Q"7 he) = hy + Q* g

Then these two features are concatenated token-wise and then
projected to the LLM latent space through the linear projector:

hav = av—t COHC&t(iLa, ilv) (6)
D. Text Decoding

(&)

Since we leverage an LLM as the text decoder, the text
instruction prompt x; needs to be transformed into text em-
beddings through the LLM tokenizer E;. Then the fused audio-
visual features and text embeddings are concatenated and fed
into the LLM decoder D, to produce the output z;:

2 = Dy(Concat(hgy, Er(24)), Matt) (7

where M,;; denotes attention masks for reflecting the auto-
regressive property of LLM.



TABLE I
AAC RESULTS ON AUDIOCAPS TEST SPLIT FOR VARIOUS MODELS. BOLD INDICATES THE BEST AMONG AUDIO-VISUAL METHODS, WHILE UNDERLINED
REPRESENTS THE OVERALL TOP PERFORMERS. NOTE THAT GROUND-TRUTH CAPTIONS ARE BASED SOLELY ON AUDIO. TRESULTS REPRODUCED ON OUR
ENVIRONMENT. AS: AUDIOSET, AC: AUDIOCAPS, WC: WAVCAPS, CL: CLOTHO, MA: MULTI-ANNOTATOR CAPTIONED SOUNDSCAPES.

Model Pre-training Dataset BLEU; 1 BLEU4 1 ROUGE[, 1 METEOR 1 CIDEr 1 SPICE 1 SPIDEr 1
Audio-Based
ACT [2] AS 64.7 252 46.8 222 67.9 16.0 42.0
BART-(5g5 [3] AS 69.9 26.6 49.3 24.1 75.3 17.6 46.5
CNN-GPT2 [4] - 71.3 30.9 50.3 24.0 73.3 17.7 455
EnCLAP-large [5] - - - - 25.5 80.3 18.8 49.5
HTSAT-BART [6] AC+CL+WC 70.7 28.3 50.7 25.0 78.7 18.2 48.5
CNext-trans [7] AC+CL+MA+WC - - - 252 80.6 18.4 49.5
LOAET [8] - 69.8 25.8 49.2 24.8 75.6 18.2 46.9
LOAE [8] AC+CL+WC - - - 26.7 81.6 19.3 50.5
AutoCap (audio+text) [9] AC 72.1 28.6 51.5 25.6 80.0 18.8 494
AutoCap (audio+text) [9] AC+CL+WC 72.3 29.7 51.8 253 83.2 18.2 50.7
Audio-Visual
V-ACT [15] - 69.8 28.1 494 23.7 71.1 17.2 44.2
AVCap (freeze) [16] - 70.8 29.5 49.8 22.8 74.4 16.2 455
AVCap (finetuning) [16] - 68.1 28.7 49.1 24.3 75.8 17.8 46.8
LAVCaps (ours) - 72.3 29.7 51.0 26.2 84.9 18.5 51.7
TABLE II TABLE IV

ABLATION ON THE USE OF VISUAL MODALITY AND EOT- ABLATION OF THE ENCODER AND DECODER TRAINING STRATEGIES.

Audio Visual Lor METEOR 1 CIDEr 1 SPICE 1 SPIDEr 1 Encoder Decoder METEOR 1 CIDEr 1 SPICE 1 SPIDEr 1
v X X 24.6 719 17.4 47.6 Finetune Freeze 25.3 71.7 17.3 475
v v X 254 78.1 18.8 48.5 LoRA Freeze 24.4 73.5 17.3 45.4
v v v 26.3 83.1 18.9 51.0 Finetune LoRA 25.5 78.9 18.1 48.5
LoRA LoRA 26.2 84.9 18.5 51.7

TABLE III

ABLATION ON AUDIO-VISUAL FUSION METHOD. Lot IS ALL APPLIED.

Method METEOR 1 CIDEr 1 SPICE 1 SPIDEr 1
Q-Former 24.4 77.0 18.0 47.5
Joint encoder 24.9 76.7 18.4 475
Cross attention 24.8 80.1 17.9 49.0
OT-Att (ours) 26.2 84.9 18.5 51.7

E. Training Objectives

As well as OT loss, the conventional autoregressive cross-
entropy loss is also used for training:

T
1

Lcg = 7 ;bgp(yi | Y1:i—15 Paw, h) (®)

where y; is a i-th text token. The final training objective is the

weighted sum of two losses:

L = AcgLce + dorLor )

III. EXPERIMENTS

A. Experimental settings

1) Datasets: We utilize the AudioCaps dataset [19] for
training and evaluation, where each 10-second clip is an-
notated based on its audio component. Due to the limited
accessibility of some YouTube links, we acquired 48,595 clips
for the training and 944 clips for the test set. For audio pre-
processing, we applied Short-Time Fourier Transform using a
25-ms Hanning window with a 10-ms hop size to each 10-
second waveform sampled at 16 kHz, resulting in a 1024 x 64
spectrogram. For visual input, 20 frames are uniformly se-
lected from a 10-second clip at 2 FPS, then center-cropped to
224 x 224 pixels and normalized.

2) Implementation Details and Metrics: During training,
we utilize the AdamW optimizer with 5, = 0.9, 52 = 0.999,
and a weight decay of le-6. For the first two epochs, out
of a total of 100, the learning rate warms up to 5e-6, and
then it gradually decreases following a cosine annealing strat-
egy. We adopt a pre-trained Consistent Ensemble Distillation
model [20] as an audio encoder, and a pre-trained CLIP
ViT-L/14 model [21] as a visual encoder. For text decoding,
Llama 2 [22] with 7B parameters is employed. Both the audio
encoder and text decoder are fine-tuned using low-rank adap-
tation (LoRA) [23], while the visual encoder is kept frozen.
When evaluating our methods, we use the metrics commonly
employed for AAC, including BLEU [24], ROUGE-L [25],
METEOR [26], CIDEr [27], SPICE [28], and SPIDEr [29].
Experiments are conducted using Intel Gaudi 2 Al Accelerator.

B. Main Results

The audio captioning performance of LAVCap on the
AudioCaps dataset is shown in Table I. LAVCap not only
outperforms previous works in closely matching the lexical
content of ground truth captions but also shows enhanced se-
mantic relevance and informativeness. It is impressive that our
framework achieves high performance although the ground-
truth captions in AudioCaps are annotated based solely on
audio. Notably, our model still achieves comparable perfor-
mance to the concurrent works [8], [9] that utilize multiple and
additional datasets for pre-training. The results demonstrate
that using an OT mapping between audio and visual modalities
enables the model to train more effectively on semantically
aligned features across these modalities, compared to previous
methods such as cross-attention and concatenation. A further
analysis of the results can be found in Section III-C.



TABLE V
EXAMPLES OF INSTRUCTION PROMPTS FOR THE PROPOSED METHOD.

Prompts 1
USER: <Audio>[Tokeny.+y]</Audio> Please describe the audio.\n
ASSISTANT:

Prompts 11
USER: <Content>[Tokeny.y]</Content> Please describe the content.\n
ASSISTANT:

Prompts 111
USER: <Audio>[Tokens,]</Audio><Visual >[Tokeny]</Visual >
Please describe the audio and visual elements.\n ASSISTANT:

TABLE VI
ABLATION RESULTS BASED ON EXAMPLES OF INSTRUCTION PROMPTS.
Prompt METEOR 1 CIDEr 1 SPICE 1 SPIDEr 1
Prompts 1 26.2 84.9 18.5 51.7
Prompts 11 25.8 82.5 19.0 50.8
Prompts 111 25.9 81.8 19.1 50.5

C. Ablation Studies

1) Visual Modality and OT Loss: We conduct an abla-
tion study to evaluate the effectiveness of leveraging visual
modality and OT loss. As shown in Table. II, the performance
improvement from simply adding visual modality is marginal
without OT loss. This demonstrates that bridging the modality
gap through OT loss is crucial for enabling LLM to compre-
hend multi-modal contexts and process audio-visual features.

2) Audio-Visual Fusion Methods: Based on the utilization
of visual modality and OT loss, we explore various audio-
visual fusion methods. The results in Table. III show that the
cross-modal fusion methods employed by the previous works
are not effective in our setting. We infer that this is due to
the lack of training data to optimize the learnable parameters
of these fusion methods and simultaneously align the fused
audio-visual features to the LLM latent space. On the other
hand, the proposed OT attention module does not need any
learnable parameters and leverages an optimal transport as-
signment map as an attention weight, thus providing effective
audio-visual fusion in a data-efficient way.

3) Encoder-Decoder Training Strategy: After deciding on
the optimal network architecture, we seek the best training
strategy for our framework. As shown in Table. IV, training
the encoder with LoRA instead of fine-tuning the entire param-
eters is much more efficient under data-limited circumstances.
In addition, freezing the weights of the LLM decoder severely
degrades the performance, indicating that the LLM decoder
should be adapted to the target dataset.

4) Instruction Prompts: To ensure that the LLM text
decoder understands the input tokens properly, we explore
various instruction prompts detailed in Table V. While prompts
I and II handle audio and visual tokens together, prompt II1
is specifically designed to understand them separately. Since
AAC focuses primarily on audio-based captioning, prompt I
performs slightly better than the others, as shown in Table VI.

D. Qualitative Results

In Fig. 2 we visualize the captions generated by models
trained with audio-only, visual-only, and combined audio-

Ground truth : A male voice and then drilling.

Audio-only : A man speaks followed by vibrations of a sewing machine.

Visual-only : A man talks while a drill works.

Audio-Visual :

A man speaks followed by a power tool drilling.

&

Ground truth : High pitched vibrations from a small motor.

Audio-only : High pitched humming of a small engine.
Visual-only : A helicopter engine is running
Audio-Visual : High pitched buzzing of a toy helicopter.

Fig. 2. Qualitative results of captions generated from models trained solely
on audio, only on visual, and on both audio and visual.

TABLE VII
MOS WITH 95% CONFIDENCE INTERVALS.
Input modality MOS 1 (1~5)
ground truth 3.81 £0.12
audio-only 2.89 £+ 0.12
visual-only 271 £ 0.12
audio-visual 4.08 £+ 0.10

visual data. While using a single modality may capture incor-
rect elements, utilizing both audio and visual inputs provides
a more detailed view of the video. Furthermore, we conduct
a user study with 20 participants, using MOS to rate each
of the 35 generated captions from 1 to 5 based on how well
they describe the video. The results in Table VII show that the
captions generated by LAVCap concretely represent the audio
content. Remarkably, MOS of LAVCap is even higher than the
ground-truth captions. This highlights the significant benefit
of incorporating the visual modality to better distinguish the
various sounds and comprehend the scene context.

IV. CONCLUSION

In this work, we propose LAVCap, an LLM-based audio-
visual captioning framework designed to incorporate visual
information into the audio modality using an optimal transport-
based strategy. Specifically, OT loss and OT-Att are introduced
to align the modality gap and promote effective fusion of audio
and visual features. The proposed model outperforms previous
captioning methods on the AudioCaps dataset, without the
need for pre-training on large datasets or post-processing,
highlighting its promise in designing new audio-visual fusion
methods.
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