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ABSTRACT

The goal of this paper is to introduce SPADE, a frame-
work for Structured Pruning and Adaptive Distillation
for Efficient Large Language Model-based text-to-speech
(LLM-TTS). Recent LLM-TTS systems achieve strong
controllability and zero-shot generalization, but their
large parameter counts and high latency limit real-world
deployment. SPADE addresses this by combining (i)
a pruning step guided by a word-error-rate-based layer
importance index to remove non-essential Transformer
layers, with (ii) multi-level knowledge distillation to
restore autoregressive coherence. On zero-shot bench-
marks, SPADE preserves near-parity perceptual quality
while halving Transformer depth, reducing VRAM us-
age by up to 20%, and achieving up to 1.7× faster
real-time factor with less than 5% of the original training
data. These results show that compact LLM-TTS models
can maintain naturalness and speaker similarity while
enabling practical real-time speech generation. Audio
samples are available at 1.

Index Terms— text-to-speech, LLM-TTS, knowl-
edge distillation, pruning, speech synthesis

1. INTRODUCTION

Large Language Model (LLM)-based text-to-speech
(LLM-TTS) systems such as CosyVoice [1, 2], VALL-
E [3], CLaM-TTS [4], RALL-E [5], and LLaSA [6] have
shown advanced controllability, prosody modeling, and
zero-shot generalization across speakers and languages.
Early approaches trained LLM backbones directly on
speech tokens [1, 7], while recent methods initialize from
pretrained text LLMs (e.g., LLaMA [8], Qwen2.5 [9])
and adapt them with speech objectives [6, 10]. Leverag-
ing rich contextual representations, these systems syn-
thesize natural speech conditioned on long prompts,
speaker embeddings, and control tokens, pushing TTS
closer to human-level performance.

Despite these advances, LLM-TTS models inherit
the costly nature of text-only LLMs, including large

1https://mm.kaist.ac.kr/projects/SPADE/
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Fig. 1: Overview of SPADE. A large LLM-TTS model is
compressed into a smaller student model through prun-
ing and multi-level distillation. Parameters are copied
from retained layers, while latent states are aligned
across pruned segments to preserve synthesis quality.

parameter counts, high memory usage, and slow au-
toregressive decoding, and these factors are particularly
pronounced in real-time deployment and on-device ap-
plications. On the other hand, a line of research in
text-only LLM domain has extensively studied model
compression, including pruning [11, 12, 13], distilla-
tion [14, 15, 16], quantization [17, 18, 19], and adaptive
inference methods such as early exiting and token re-
duction [20, 21]. However, systematic compression
methodology for LLM-TTS, where the preservation of
prosody, naturalness, and long-context coherence serve
as additional key aspects, remains underexplored.

In this paper, we present SPADE, a framework
for Structured Pruning and Adaptive Distillation for
Efficient LLM-TTS. By removing non-essential layers

https://mm.kaist.ac.kr/projects/SPADE/
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(a) CosyVoice 2
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Fig. 2: WLI and cosine-based layer importance of (a) CosyVoice 2 and (b) LLaSA. High WLI indicates that WER
increases significantly when the layer is removed, and high cosine-based importance indicates the input and output
latents of the layer are dissimilar. We found that, based on WLI, the layers in the beginning, middle, and the end
contribute critically to performance. Our method prunes the model by removing layers with least contribution to the
performance.

through a Word Error Rate (WER) based layer impor-
tance index and recovering performance via multi-level
distillation, SPADE achieves substantial efficiency gains
while preserving perceptual quality. Across zero-shot
benchmarks, SPADE halves Transformer depth, reduces
overall parameters by up to 40%, lowers VRAM con-
sumption by up to 20%, and accelerates inference by
as much as 1.7×, all while retaining near-parity in per-
ceptual metrics. Moreover, the knowledge distillation
process shows remarkably high data-efficiency: The
recovery of performance requires less than 5% of the
pretraining data of the original checkpoints. These re-
sults highlight the framework of pruning and distillation
as a practical pathway toward compact, high-fidelity,
real-time speech generation.

2. PROPOSED METHOD

Our framework first explores the importance of each
layer in LLM backbone and prunes non-essential lay-
ers to compress the model. Subsequently, an efficient
knowledge distillation is applied to effectively restore
the performance of the pruned model.

2.1. Model compression through pruning

SPADE is motivated by using the nature of residual
connections: xl = xl−1 + fl(x

l−1), where xl and f l

denote the hidden state and transformation in the layer
l, respectively. In LLM-TTS, each transformer layer
contributes by refining latent representations through
residual connections [22]. Although the architecture
shows strong performance in diverse applications, recent
studies in text-based LLM suggest some layers provide

only weak refinements and can be removed with lit-
tle effect [13, 23]. An established criterion to identify
them is to compute the cosine distance between inputs
and outputs of a layer [24]. However, Fig. 2 shows
that cosine-based layer importance (CLI) does not align
with the performance contribution of layers in TTS, as
indicated by the different patterns in WER change.

To address this, we leverage WER, as the primary in-
terest is the semantic consistency of generation, and pro-
pose WER-based layer importance (WLI):

WLIi = ED

[
WER

(
model(x2;θ\i,x1,y1),y2

)]
, (1)

where θ\i denotes the model parameters without the i-th
layer, D is a subset of the evaluation set, and (x1,y1)
and (x2,y2) denote reference and query text-audio pairs,
respectively. Specifically, a layer is considered impor-
tant only if its absence causes significant degradation
in WER. Unlike cosine-based layer importance, which
only estimates the difference between inputs and outputs
within a layer, WLI directly measures the contribution of
each layer to the final performance. As shown in Fig. 2
evaluated WLI with Whisper [25], and found that many
of the layers have negligible impact on performance,
indicating a significant redundancy and aligning with
the findings in text-domain LLMs [13]. Moreover, we
find that the earliest, central, and final layers consistently
emerge as important across different LLM-TTS models.
Based on the analysis, we prune transformer layers with
low WLI values from the LLM backbones.

2.2. Recovering original performance

While the proposed framework effectively reduces the
parameters without additional modules, such as parameter-



efficient fine-tuning [26, 27], the pruned model naturally
confronts disconnected flow of latent information. To ad-
dress this, we leverage the original un-pruned model as
the teacher and perform a knowledge distillation training
that simply heals the pruned model to minimize the loss
of performance without any additional parameters. To
maximize the restoration, we employ a composite loss
that benefits from both supervised learning and teacher-
guided knowledge distillation:

L = α ∗ LCE +
1− α

4
∗
(
Llogit +Ll +La +Le

)
. (2)

Here, the Cross-Entropy loss LCE is responsible for
the supervised component that directly guides the out-
put distribution. The distillation component comprises 4
elements: Embedding reconstruction loss Le, alignment
losses on logit Llogit, latent Ll, and attention La, follow-
ing [24]. To provide more stability, we implement the
Llogit with mixed distribution by leveraging Skew KL
Divergence [16]. For Le,Ll, and La, we calculate Mean
Squared Error (MSE) of embedding outputs, intermedi-
ate latents, and attention matrices between the teacher
and student, respectively. To maximize the distillation of
teacher’s knowledge, we propose to dynamically select
layers to apply loss for Ll and La. Specifically, as shown
in Fig. 1, the target values (latent, attention map) for the
student layer (ln) are derived from the last layer before
the next retained layer (lm+2) from the teacher model.
While simple, this approach allows the pruned student
model to retain not only its original capability but also
those of the removed layers, culminating in a smaller yet
more compact model. Finally, we combine the super-
vised and distillation components by adjustable weight
alpha to balance the influence of each, where the value
is empirically set to 0.25 to deliberately provide stronger
supervised guidance.

3. EXPERIMENTAL SETUP

To evaluate whether pruning and distillation can truly
enable compact yet high-fidelity LLM-TTS systems, we
benchmark SPADE against two representative baselines:
CosyVoice 22 [28] and LLaSA-1B3 [6]. Both models are
chosen for their strong zero-shot capabilities and public
availability of checkpoints.

Since a key motivation of SPADE is to minimize re-
training cost, we fine-tune each pruned variant on only
a fraction of the data: 25% of LibriHeavy [29] (EN) for
LLaSA and LibriTTS [30] (EN) for CosyVoice 2. This
corresponds to less than 5% of the pretraining corpus
size, testing whether our framework can recover quality
under data-constrained conditions.

2https://github.com/FunAudioLLM/CosyVoice
3https://github.com/zhenye234/LLaSA_training
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Fig. 3: SPADE effectively reduces half of the Trans-
former layers, reducing VRAM usage by 14% for
CosyVoice 2 and 20% for LLaSA.

We assess the performance on LibriTTS test-clean
and the Seed-TTS eval set [31], both of which are widely
used for zero-shot evaluation. All experiments are con-
ducted on 4×NVIDIA A6000 GPUs, with official train-
ing scripts left unchanged aside from data size and prun-
ing. CosyVoice 2 is fine-tuned with dynamic batches up
to 20,000 tokens, whereas LLaSA uses a batch size of 4.
Fine-tuning with SPADE runs for 7 epochs to CosyVoice
2 and for 1 epoch when applying it to LLaSA.

To evaluate both computational efficiency and per-
ceptual quality, we consider a range of complementary
metrics. Efficiency is assessed in terms of model depth,
parameter count, and real-time factor (RTF), while intel-
ligibility is measured using word error rate (WER). Per-
ceptual aspects are captured objectively through speaker
similarity (SS) and UTMOS using VERSA toolkit [32],
and subjectively through the naturalness mean opinion
score (NMOS) with 20 listening and 50 random samples
from both evaluation sets per model. Together, these met-
rics reveal whether compact models preserve the quali-
ties essential for real-world TTS deployment.

4. RESULTS AND ANALYSIS

4.1. Effect on performance after pruning

Table 1 presents the main results of applying SPADE to
CosyVoice 2 and LLaSA with different configurations.
For CosyVoice, pruning to 12 layers halves the depth,
reduces parameters by 39.7% and accelerates inference
by 42.6%. Moreover, effective VRAM usage is reduced
by 14%, as depicted in Fig. 3. In particular, these gains
come with no significant degradation in both quantita-
tive and qualitative metrics, showing a slight increase of
0.68 in WER for the challenging Seed-TTS dataset and
a 0.11 reduction in NMOS. A more aggressive variant

https://github.com/FunAudioLLM/CosyVoice
https://github.com/zhenye234/LLaSA_training


Model Layers Params RTF NMOS Seed-TTS test-en LibriTTS test-clean

WER SS UTMOS WER SS UTMOS

Human Record - - - 3.96± 0.14 1.47 1.00 3.52 1.85 1.00 4.14

Vocoder Resyn. of GT - - - 3.87± 0.15 1.53 1.00 3.53 1.65 1.00 4.01
CosyVoice 2 4 [28] 24 0.63 0.61 3.71± 0.13 2.03 0.66 4.15 1.43 0.81 4.41
CosyVoice 2 + Ours 12 0.38 0.35 3.58± 0.14 2.71 0.66 4.16 1.59 0.82 4.41
CosyVoice 2 + Ours 9 0.32 0.33 3.55± 0.14 3.09 0.66 4.15 1.94 0.81 4.40

Codec Resyn. of GT - - - 3.59± 0.15 2.49 1.00 3.69 2.52 1.00 4.01
LLaSA 4 [6] 16 1.7 0.82 3.37± 0.15 3.54 0.46 4.13 1.54 0.47 4.41
LLaSA + Ours 8 1.3 0.58 3.11± 0.14 4.20 0.41 4.06 1.88 0.43 4.40

(a) Absolute zero-shot evaluation results on Seed-TTS Eval set and LibriTTS test-clean. Higher values indicate better performance
for NMOS, SS, and UTMOS, while lower values indicate better performance for RTF and WER. Missing entries correspond to
trivial cases, e.g., human records or codec/vocoder resynthesis of groundtruth (GT).

Model Pair Layers Params RTF Data WER SS UTMOS

CosyVoice2 → CosyVoice2 + Ours (12) ↓ 50.0% ↓ 39.7% ↓ 42.6% 2(0.3)% ↓ +0.43 ↑ +0.005 ↑ 0.00↔
CosyVoice2 → CosyVoice2 + Ours (9) ↓ 62.5% ↓ 49.2% ↓ 45.9% 2(0.3)% ↓ +0.79 ↑ +0.000↔ 0.00↔

LLaSA → LLaSA + Ours ↓ 50.0% ↓ 23.5% ↓ 29.3% ≤ 12.5(5)% ↓ +0.50 ↑ −0.045 ↓ −0.04 ↓

(b) Relative performance of SPADE models compared to their uncompressed versions. For data usage, the exact amount of English
data in the internal LLaSA pretraining set is unknown; we therefore report an upper bound (≤).

Table 1: Zero-shot evaluation on Seed-TTS (test-en) and LibriTTS (test-clean). Table 1a shows efficiency and quality,
while Table 1b reports relative gaps of pruned variants.

with only 9 layers further reduces parameters by 49.2%,
improves RTF by 45.9%, and lowers VRAM usage by
17%. While this extreme setting renders additional in-
crease in WER, perceptual metrics such as NMOS, SS,
and UTMOS remain stable, suggesting that SPADE en-
ables flexible trade-offs between efficiency and intelligi-
bility. To confirm that our framework generalizes beyond
a single backbone, we conduct experiment on LLaSA, a
larger variant based on speech codec. Here, pruning re-
moves half the layers, decreases parameters by 23.5%,
improves RTF by 29.3% (1.41× speed-up), and reduces
VRAM by 20%. The result suggests that, while most
of the metrics lie in acceptable range, the performance
degradation is relatively larger compared to CosyVoice 2.
Based on the analysis in Fig. 24, we expect it attributes to
overall high WLI values across all layers, indicating each
layer contributes similarly to the performance.

4.2. Ablation study

We evaluate the effectiveness of the proposed methodol-
ogy with a systematic ablation study. Table 2 presents
experiments on CosyVoice 2 with LibriTTS test-clean.
First, the proposed WLI-based pruning is replaced with
existing cosine-based pruning. The result shows a no-
table increase in WER and CER, demonstrating the prun-
ing based on WLI, a metric directly related to intelli-

4Metrics are reported based on official checkpoints

Expr. WER ↓ CER ↓ SS ↑ UTMOS ↑
CosyVoice 2 1.43 0.46 0.81 4.41

CosyVoice 2 + Ours 1.59 0.54 0.82 4.41
Cosine-based pruning 1.74 0.61 0.81 4.40
Distill from original layer 1.65 0.58 0.81 4.40

Table 2: Ablation experiment on LibriTTS test-clean.
Both cosine-based pruning and the alternative latent
knowledge distillation scheme degrade the overall per-
formance, where cosine-based pruning shows more sig-
nificant increase in WER and CER.

gibility, successfully prevents performance degradation.
Moreover, dynamic distillation loss is removed and stu-
dent layer is distilled only with the information from the
corresponding teacher layer. The overall decrease in per-
formance suggests that adaptively choosing the target in
distillation training is simple yet plays a significant role.

5. CONCLUSION

We presented SPADE, a pruning-based framework for
compressing LLM-TTS models, and showed that SPADE
achieves substantial efficiency gains while preserving in-
telligibility and naturalness. We investigate the impor-
tance of each layer using the proposed WLI and find that
many layers contribute little to audio synthesis. Experi-
mental results verify that, by applying SPADE, such lay-
ers can be removed without harming perceived quality.
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