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Abstract—The goal of this paper is to accelerate codec-based
speech synthesis systems with minimum sacrifice to speech
quality. We propose an enhanced inference method that allows
for flexible trade-offs between speed and quality during inference
without requiring additional training. Our core idea is to predict
multiple tokens per inference step of the AR module using
multiple prediction heads, resulting in a linear reduction in
synthesis time as the number of heads increases. Furthermore,
we introduce a novel speculative decoding technique that utilises
a Viterbi-based algorithm to select the optimal sequence of
generated tokens at each decoding step. In our experiments,
we demonstrate that the time required to predict each token
is reduced by a factor of 4 to 5 compared to baseline mod-
els, with minimal quality trade-off or even improvement in
terms of speech intelligibility. Audio samples are available at:
mm.kaist.ac.kr/projects/mtp.

Index Terms—speech synthesis, speculative decoding

I. INTRODUCTION

Text-to-Speech (TTS) [1] has garnered significant atten-
tion within the research community. Amongst the various
approaches, deep neural networks have shown considerable ad-
vancements in modeling natural speech [2]–[7]. Recent models
based on this framework have shown the potential to generate
fluent speech and replicate a speaker’s voice only using a
few seconds of audio input [7]–[16]. Furthermore, LLMs also
possess outstanding ability on several speech task such as
recognizing emotions, identifing speakers, enhancing speech,
or even understanding the complex context from background
sounds [16]–[19]. This ability is important to create an unified
model that can naturally communicate with humans, reflecting
emotion, accent, and style [18].

The LLM-based TTS model exhibits outstanding generative
ability due to the capacity of the Transformer, as described
by the scaling law [20], the advanced development of audio
tokenizers [15], [21]–[23], and the avalability of large speech
dataset [24]–[27]. This class of TTS models can be viewed
as an extension of large language models, where the input
speech is considered as a new language. The vocabulary of
this new language is the set of discrete representations, also
referred to as tokens, which are generated by encoder of
audio codec. The TTS model then leverages its sequence
generation ability to generate sequences of tokens that are
transformed back to waveforms by the decodec module [7],
[11] or the vocoder module [28]–[31]. Since speech itself also

has linguistic content in the form of a sequence, a promising
approach is to harness the power of pretrained LLMs on text-
only domains [17], [32], [33].

Although AR inference brings significant improvements to
codec-based speech synthesis, however it substantially reduces
the generation speed of TTS systems. This slowdown is a
notable drawback compared to other types of speech synthesis
models. For example, non-AR models [4], [5] generate an
entire sentence in a single step, and models using progressive
inference require only a few function evaluations (NFE) to
produce high-quality speech output [6], [34], [35]. In contrast,
models using AR inference with a large language model archi-
tecture must generate sequences step by step, with the number
of steps being equal to the sequence length. Consequently, as
the sequence length increases, the time required for generation
also increase. This problem is compounded by the fact that
the computational complexity of Transformer-based models
increases quadratically with sequence length, leading to an
increase in the total floating-point operations per sequence.

In this paper, we introduce a multi-token prediction method
that significantly reduces the NFE while maintaining compa-
rable quality. Building on the observation that consecutive
speech tokens are often similar, our architecture is trained
to predict multiple future tokens simultaneously, rather than
just one at a time. Additionally, we propose a Viterbi-like
approach to capture the statistical relationships between the
predicted tokens. A key advantage of our method is that it
allows users to explicitly control the quality-speed trade-off by
adjusting the number of future tokens predicted per function
evaluation, without the need for re-training or fine-tuning the
model. To our knowledge, this is the first instance of Viterbi-
based speculative decoding in this context.

II. RELATED WORKS

Neural Audio Codec: A codec model consists of an
encoder, a decoder, and multiple codebooks that are quantized
from the latent space of the encoder. These models are
often built on the RVQ-GAN framework [21], [22] which
provide flexible bitrate for the task of audio compression.
Recently, several approaches have been proposed for designing
an optimal discrete representation space. Early works focused
on improving compression and reconstruction quality [7], [21],
[22]. As codec-based TTS systems have demonstrated strong
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Fig. 1. AR module with n = 3 addition heads. Multiple heads are attached into current model that are simultaneously optimized to predict few future tokens
given current state. Note that all the heads are trained once but can be flexibly ignored during inference for faster inference speed. During inference, few future
tokens are predicted given current state per inference step. The generated tokens are concatenated into input sequence for the next inference step, respectively.
Speculative decoding is also applied to enhance to quality of output tokens sequences.

performance, more recent efforts have focused on developing
factorized and distinguishable features for each codebook [13],
[15], [23], [36]–[39]. Moreover, current studies [36], [40]–
[42] introduce codecs for mel-spectrograms, significantly in-
creasing token compression rates and leading to faster AR
module inference.

Multi-tokens prediction for AR module: Multi-token pre-
diction is not a new concept and can be related to speculative
decoding [43]–[45]. These methods use a smaller draft model
to generate an initial token sequence, which is then refined by
the larger or original model for a coherent continuation. Recent
works explore this approach in large language models (LLMs)
like incorporating techniques to reduce hardware memory
requirements [46] or using tree search algorithms to enhance
the quality of the output sequence [45]. To our knowledge,
the most related work to ours is VALL-E 2 [8], but the multi-
token prediction methods used in these two approaches are
fundamentally different. Additionally, our work not only offers
explicit, training-free control over the quality-speed trade-
off but also improves the relationship between the predicted
tokens through a Viterbi-like algorithm.

III. METHOD

A. Problem modeling

The popular codec-based speech synthesis model architec-
ture comprises two main modules: an auto-regressive (AR)
module and a non-auto-regressive (NAR) module, following
the VALL-E framework [7]. Specifically, given a training
dataset with pairs s,p, where s represents the speech signal
and p = {p1, p2, . . . , pT } is the corresponding phoneme
sequence of length T , the codec model compresses the
speech signal into discrete tokens A using eight quantizers:
Codec(s) = A8×L = {a1,a2, . . . ,a8}, where each ai =
{ai1, ai2, . . . , aiL}. In models using the VALL-E architecture,
the AR module is responsible for predicting a1, while the
NAR module regresses the entire sequence ai

∣∣8
i=2

.

Specifically, for the discrete token sequence a1, an auto-
regressive Transformer Decoder-only θAR is trained to predict
the next tokens based on a text prompt p, and an acoustic
prompt condition ã1 extracted from the reference audio, and
all previously predicted tokens.

p(a1|p, ã1;θAR) =

L∏
t=0

p(a1
t+1|a1

<t, ã
1,p;θAR) (1)

Since all data are discrete, we concatenate them all into a
single sequence without specific tokens to distinguish them.
For tokens of the remain layers ai

∣∣8
i=2

, we train a NAR
LM θNAR to iteratively predict each token sequence. Each
prediction process is conditioned on phoneme sequence p and
generated token sequence of previous layers a<j .

p(a2:8|p, ã;θNAR) =

8∏
j=2

p(aj |a<j , ã,p;θNAR) (2)

B. Multiple Tokens Prediction (MTP)

We take inspiration from [45], [46], which utilizes parallel
decoding to accelerate the decoding process of LLM. We
divide the AR module into two parts: first, encode all previous
tokens in to latent space p(z1:t|a1

1:t, ã,p;θAR), then, using
this latent z1:t to predict a few n consecutive future tokens
p(a1

t+1:t+n|z1:t) by n distinguished heads. This idea leads to
a new negative log-likelihood objective function of the whole
AR module with multiple heads:

L = −
∑
t

n∑
i=1

logP (a1t+i|z1:t)P (z1:t|a1
1:t, ã,p) (3)

≥ −
∑
t

logP (a1
t+1:t+n|z1:t)P (z1:t|a1

1:t, ã,p) (4)

= −
∑
t

logP (a1
t+1:t+n|a1

1:t, ã,p) (5)
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Fig. 2. Viterbi-based Speculative Decoding is illustrated as follows: (1) Multiple prediction
heads generate several distributions per timestep simultaneously. (2) To optimize memory and
computational efficiency, the dimensions of the transition matrix and state probabilities are reduced
by selecting only the necessary rows and columns. (3) The best sequence is determined using
Speculative Decoding, as described in Algorithm 1. The transition matrix computation for LibriTTS
is completed in just 3 minutes. Additionally, topk sampling is employed to preserve diversity.

Algorithm 1 Speculative Decoding

1: Initialization:
2: for each state ai do
3: δ1(i)← S1(ai)
4: ψ1(i)← 0
5: end for
6: Recursion:
7: for each time step t = 2, 3, . . . , T do
8: for each state j do
9: δt(j)← maxi δt−1(i) ·Q(ai, aj) ·St(aj)

10: ψt(j)← argmaxi[δt−1(i) ·Q(ai, aj)]
11: end for
12: end for
13: Termination:
14: P ∗ ← maxj δT (j)
15: a∗T ← argmaxj δT (j)
16: Path Backtracking:
17: for each time step t = T − 1, . . . , 1 do
18: a∗t ← ψt+1(a∗t+1)
19: end for
20: Return: A∗ = (a∗1, a

∗
2, . . . , a

∗
T )

The equality in 4 holds when n consecutive tokens are
independent given z1. This highlights the need for a tokenizer
that supports such inference. To the best of our knowledge,
SpeechTokenizer [15] one is the most suitable candidate,
as its first-layer tokens encode only linguistic information,
effectively serving as pseudo labels for phonemes. This makes
future token prediction easier compared to Encodec [22],
where linguistic and acoustic information are entangled at
every quantizer layer. Furthermore, by applying n heads in
parallel during inference, we reduce the time complexity
from O(L) to O(Ln + α), where α represents the additional
computational overhead introduced by the extra heads.

C. Vitebi-based Speculative Decoding

Predicting multiple tokens a1
t+1:t+n at once, based on the

context from a1
≤t, introduces a context mismatch among the

predicted tokens. Specifically, except for a1
t+1, all tokens

a1
t+2:t+n are predicted without full awareness of the preceding

tokens, which can lead to incorrect predictions that accumulate
over time and compromise the entire sequence. In this work,
we propose a Viterbi-based speculative decoding technique to
bridge the contextual gap between successive tokens predicted
simultaneously. The key objective of this algorithm is to select
the best possible sequence given topk tokens of the n heads.

Let V represent the set of tokens from the first layer of
the RVQ model. We assume each token depends only on its
previous token, allowing us to model the token transitions
using a Markov chain. Our goal is to model the likelihood of
token ai occurring immediately before token aj , represented
by the probability Q(i, j), where Q ∈ R|V |×|V | is the
transition matrix derived from the dataset. Additionally, we
obtain St(ai) from the t heads of the multi-token prediction
(MTP), representing the probability of ai at time t. Therefore,
the probability of transitioning from ai at time t− 1 to aj at
time t is Q(ai, aj) · St(aj).

To determine the optimal sequence of tokens A∗, we apply
Viterbi-based speculative decoding, as shown in Fig. 2 and
Algorithm 1. However, implementing this algorithm has a
computational complexity of O(n∗V 2), leading to high com-
putational costs. To mitigate this, we reduce the dimensions
of both the transition matrix and the state matrix by selecting
only the relevant elements during each inference step. This
reduces the size of the transition matrix from R|V |×|V | to
Rm×m, where m ≤ k ·n is the total number of unique tokens
from the top k highest-probability predictions across the n
heads of the MTP. In practice, m is much smaller than V ,
resulting in a new computational complexity of O(n ∗ m2),
which significantly reduces the overhead computation time for
each MTP inference.

IV. EXPERIMENTS

A. Dataset

We conduct experiments on the LibriTTS [27] corpus,
using the all train subsets for training, and ’test-clean’ for
evaluation, following [13]. We also use SpeechTokenizer to
extract audio tokens all experiments. For fair comparison, all
models are trained from scratch. Both AR and NAR modules
are optimized separately for 20 epochs on a single A6000
GPU, with a learning rate of 0.05 and 200 warmup steps.

B. Comparision with baselines

We integrate our method into state-of-the-art models,
VALL-E [7] and USLM [15], and evaluate their zero-shot
performance using various metrics. For content consistency,
we compute Word Error Rate (WER) and Character Error Rate
(CER) with a Conformer-Transducer speech-to-text system1.
Speaker similarity is assessed via cosine similarity of x-vector
embeddings between prompts and generated utterances. We
also conduct SMOS and MOS surveys for speaker similarity

1nvidia/teams/nemo/models/stt en conformer transducer large



TABLE I
EXPERIMENTAL RESULTS ON LIBRITTS DATASET. TPT DENOTES TIME PER TOKEN (MS/TOKEN) AND SPEEDUP REFERS TO THE EXTENT OF SPEED

IMPROVEMENT COMPARED TO THE BASELINE. MOS IS PRESENTED WITH 95% CONFIDENCE INTERVAL. ↑: HIGHER IS BETTER, ↓: LOWER IS BETTER.

Model TPT↓ Speedup↑ MOS↑ SMOS↑ UTMOS↑ SIM↑ WER(%)↓ CER(%)↓

Ground truth – – 4.77±0.09 3.53±0.29 4.14 – 2.9 0.8

VALL-E [7] 20.5 – 2.89±0.17 3.20 ±0.20 3.56 79.6 12.8 8.1
+ Ours 4.5 ×4.56 2.79±0.18 2.79±0.20 3.53 79.2 12.0 8.3

USLM [15] 23.5 – 3.72±0.15 3.00±0.20 3.82 79.3 11.5 7.7
+ Ours 4.4 ×5.34 4.02±0.12 3.25±0.19 3.82 78.8 8.7 5.2
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TABLE II
ABLATION STUDIES ON THE EFFECT OF topk IN SPEED AND QUALITY OF

MULTIPLE TOKEN PREDICTION

n = 8 n = 4

topk TPT↓ UTMOS↑ WER↓ TPT↓ UTMOS↑ WER↓

3 4.4 3.82 8.6 8.0 3.82 8.1
5 4.4 3.79 9.3 8.0 3.78 8.7
7 4.4 3.76 9.7 8.0 3.72 9.9
9 4.4 3.74 10.2 8.0 3.65 10.9
15 4.5 3.67 11.1 8.0 3.49 12.2
25 4.5 3.58 12.2 8.1 3.31 13.9

and audio quality (5-point scale), and use UTMOS [47] for
MOS estimation. Generation efficiency is measured using
time-per-token (TPT). All metrics, except the MOS and SMOS
surveys (50 random samples per model), are computed on the
test-clean set. Results are shown in Table I.

Compared to the baselines, multiple token prediction with
8 prediction heads and speculative decoding accelerates the
inference process by 4 to 5 times while maintaining com-
parable speech quality and speaker similarity. Notably, con-
tent consistency improves, with WER decreasing in both
USLM and VALL-E, and CER improving in USLM. This
demonstrates the potential of multiple token predictions to
enhance content accuracy while speeding up the AR process.
Specifically, USLM with speculative decoding achieved the
best WER of 8.7% and was the fastest among all models.
The difference in inference time per token between VALL-E
and USLM arises from the variance in the length of sequences
generated by each model, which lead to variance of computing
complexity. However, the speedup ratios are both theoretically
and experimentally validated, ensuring that the performance
improvements are consistent across different conditions.

We further assess the effectiveness of Viterbi-based specu-
lative decoding by comparing quality and content consistency
across different numbers of prediction heads. Fig. 3 shows that
increasing the number of heads accelerates the AR process,
with minimal impact on speed due to the reduced transi-
tion matrix dimensions, which shrink the search space for
the Viterbi algorithm. The slight overhead from speculative
decoding is highlighted in Fig. 6, comparing scenarios with
Viterbi enabled (w/ Viterbi) or disabled (w/o Viterbi). To
examine the trade-off between speed and quality, we evaluate
WER, CER, and UTMOS for prediction heads ranging from
2 to 8. Without Viterbi-based decoding, content consistency
remains acceptable (WER) with a few heads, but UTMOS
drops rapidly. With more than 4 heads, both speech quality
and content accuracy degrade significantly because of accuracy
reduction in far future heads. However, speculative decoding
maintains consistent synthesis performance across different
numbers of heads, as shown in Figs. 4 and 5. Notably, higher
topk expands the Viterbi algorithm’s search space with trivial
additional time. According to Table II, although higher topk
increases diversity in generated speech, it tends to lower
overall quality in terms of WER and UTMOS.

V. CONCLUSION

In this work, we propose an inference method that com-
bines multi-token prediction with Viterbi-based speculative
decoding, significantly accelerating the AR module during
inference. Our approach not only achieves faster inference
but also maintains, or even surpasses, baseline performance in
terms of generation quality. Additionally, the model is trained
only once, yet offers explicit control over the trade-off between
quality and speed. However, exploring the compatibility of
more tokenizers with Viterbi-based speculative decoding is a
promising direction for future work.
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