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ABSTRACT

Contrastive audio–language pretraining yields powerful joint repre-
sentations, yet a persistent audio–text modality gap limits the ben-
efits of coupling multimodal encoders with large language models
(LLMs). We present Diffusion-Link, a diffusion-based modality-
bridging module that generatively maps audio embeddings into the
text-embedding distribution. The module is trained at the output em-
bedding from the frozen multimodal encoder and implemented as a
lightweight network with three residual MLP blocks. To assess the
effect of Diffusion-Link on multimodal encoder-LLM coupling, we
evaluate on Automatic Audio Captioning (AAC); to our knowledge,
this is the first application of diffusion-based modality bridging to
AAC. We report two results. (1) Modality-gap analysis: on similar-
ity and geometric criteria, Diffusion-Link reduces the modality gap
the most among prior diffusion-based methods and shows a collec-
tive migration of audio embeddings toward the text distribution. (2)
Downstream AAC: attaching Diffusion-Link to the same multimodal
LLM baseline achieves state-of-the-art on AudioCaps in both zero-
shot and fully supervised captioning without external knowledge,
with relative gains up to 52.5% and 7.5%, respectively. These find-
ings show that closing the modality gap is pivotal for effective cou-
pling between multimodal encoders and LLMs, and diffusion-based
modality bridging offers a promising direction beyond knowledge-
retrieval-centric designs. We publish our code here1.

Index Terms— diffusion probabilistic model, modality gap,
large language model, audio captioning, multimodal representation
learning

1. INTRODUCTION

Large-scale audio–language models have shown strong multimodal
performance across a range of multimodal tasks. In particular,
CLAP [1, 2] maps natural-language descriptions and acoustic sig-
nals into a shared embedding space via contrastive learning, achiev-
ing state-of-the-art results on various audio–language multimodal
tasks [3]. In parallel, advances in LLMs [4–6] enable coupling con-
trastive audio–language encoders with powerful decoders, already
demonstrating compelling audio–language reasoning and caption-
ing [7–9].

Yet recent studies reveal a structural modality gap in contrastive
multimodal encoders. Liang et al. [10] quantified the gap and linked
its magnitude to zero-shot performance and fairness, while Zhang et
al. [11] analyzed embedding geometry and showed that gap reduc-
tion benefits cross-modal tasks. From an application angle, linking
contrastive spaces [1, 12] via mediating modalities enables unpaired
transfer [13], and broader alignment across audio–vision–text–3D
yields competitive zero-shot results [14]. Taken together, these prior
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works suggest that addressing the modality gap is essential for im-
proving zero-shot and cross-modal task performance.

Diffusion models [15, 16] have become a standard generative
paradigm in various fields, reliably producing high-fidelity sam-
ples [17–19]. They learn a forward noising process toward an
isotropic Gaussian and a reverse denoising process back to the target
distribution. Viewing embedding vector as data, diffusion can learn
a trajectory that bridges the embedding distributions between two
modalities. We adopt this view and design a reverse process that first
moves audio embeddings to a shared isotropic Gaussian waypoint
and then maps them into the text-embedding distribution, thereby
enabling effective modality bridging.

Recent embedding-generative works support this view. In
speaker recognition, SEED [20] applies the forward process to
both clean and noisy speaker embeddings and trains the reverse
process to regenerate the clean speaker embeddings, introducing
cross-sample prediction and demonstrating embedding-level gen-
eration. In vision–language, Diffusion-Bridge [21] trains only on
CLIP text embeddings and injects image embeddings at an inter-
mediate reverse step to convert them into text-like vectors–an early
instance of embedding-space modality bridging.

We propose Diffusion-Link, which directly bridges the audio–
text modality gap, building on prior works [20, 21]. The key idea
is to (i) use paired audio–text embeddings from an audio-language
multimodal encoder during training to explicitly connect the two dis-
tributions, and (ii) achieve modality bridging by enforcing that the
reverse process always map to the text embedding distribution. To
this end, we gradually inject Gaussian noise into both embeddings
in the forward process to send them to a common isotropic Gaus-
sian state, and train with an L2 reconstruction loss so that the reverse
process consistently predicts embeddings from the text distribution.
Moreover, we add a topology loss that preserves the relative geome-
try of the text distribution by matching the within-batch cosine simi-
larity structure of the original text and the generated text-like embed-
dings. At inference, Diffusion-Link outputs a text-like embedding
regardless of the input modality. Diffusion-Link is a lightweight
network composed of three residual multilayer perceptron (MLP)
blocks, and the multimodal encoder is frozen during training. For
practical validation, we attach Diffusion-Link after multimodal en-
coder as a plug-in and combine it with a LLM-based decoder to eval-
uate audio captioning. To our knowledge, this is the first attempt to
apply diffusion-based modality bridging to audio captioning.

We verify consistent gains on the AudioCaps [22] dataset along
two axes: modality-gap analysis and LLM-based downstream tasks.
On similarity and geometric criteria, Diffusion-Link increases the
similarity of paired audio–text samples while decreasing that of
unpaired, achieving the largest gap reduction over prior methods.
Visualizations further show a clear collective migration of audio
embeddings toward the text-embedding distribution after the dif-
fusion process. In Automatic Audio Captioning (AAC), attaching
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Fig. 1: (a) Overview of the proposed Diffusion-Link mechanism and (b,c) illustration of our LLM-based AAC system with Diffusion-Link.

Diffusion-Link as a plug-in to the same multimodal LLM baseline
yields relative improvements of up to 52.5% in zero-shot audio
captioning and 7.5% in fully supervised audio captioning, reach-
ing state-of-the-art in both cases without external knowledge.
Because many existing systems, especially in zero-shot, rely on
external knowledge such as retrieval-augmented generation (RAG),
these results establish Diffusion-Link as a new powerful solution
that achieves consistent gains on the same multimodal LLM system
while shifting the source of performance from knowledge retrieval
to modality bridging.

2. METHOD

In this section, we describe the proposed framework (Fig. 1). We de-
note by ea0 , e

t
0 ∈ Rd the paired audio and text embeddings obtained

from a multimodal encoder [1]. For brevity, we use M to indicate
the modality, with M representing audio a and text t.

2.1. Background on Diffusion Probabilistic Models

We briefly review denoising diffusion probabilistic models (DDPM) [15]
under sample-prediction formulation.

The forward diffusion process progressively corrupts a given
sample z0 ∼ q(z0) at each timestep s = 1, . . . , T :

q(zs|z0) = N
(
zs;

√
ᾱs z0, (1− ᾱs)I

)
, (1)

where 0 ≤ αs ≤ 1 is the noise schedule, ᾱs =
∏s
τ=1 ατ , and I

is the identity matrix. This also admits the following closed-form
reparameterization:

zs =
√
ᾱsz0 +

√
1− ᾱs ϵ, ϵ∼N (0, I). (2)

The reverse diffusion process gradually denoises zt back toward
the data distribution at each timestep s:

pθ(zs−1|zs) = N
(
zs−1; µθ(zs, s), σ

2
sI
)
, (3)

where µθ(zs, s) is parameterized by a neural denoiser. The denoiser
ϕθ(·, s) is trained to predict the sample z0 at s = 0 via the objective

L = Ez0,s,ϵ

∥∥z0 − ϕθ(zs, s)
∥∥2

2
. (4)

2.2. Modality Gap Bridging via Diffusion-Link

Diffusion-Link is a neural network denoiser trained at the output em-
beddings of the multimodal encoder.

2.2.1. Training Objective

We apply the same forward process (1) to each modality M:

eMs =
√
ᾱs e

M
0 +

√
1− ᾱs ϵM, ϵM ∼ N (0, I). (5)

The denoiser ϕθ(·, s) is trained under the sample-prediction for-
mulation to map both noised text and audio embeddings to the text
embedding distribution at s= 0. This yields the cross-sample pre-
diction loss [20]:

Ldiff = E
[
∥et0 − ϕθ(e

t
s, s)∥22︸ ︷︷ ︸

text→text

+ ∥et0 − ϕθ(e
a
s , s)∥22︸ ︷︷ ︸

audio→text

]
, (6)

where the first term enforces high-fidelity reconstruction of text-like
embeddings, while the second term encourages audio embeddings
toward the text distribution.

Furthermore, we introduce a batch-level topology loss to pre-
serve the relative geometry of the text distribution. Let X=[et0,i]i∈B

and X̂= [êti]i∈B denote the text and text-like embedding matrices.
Row-wise ℓ2-normalized matrices X′ and X̂′ are obtained from X
and X̂, respectively, yielding similarity matrices Sxx = X′X′⊤ ∈
RB×B and Sxx̂ = X′X̂′⊤ ∈ RB×B, and the topology loss is the
squared Frobenius distance:

Ltopo = ∥Sxx − Sxx̂∥2F . (7)

The total training objective is

Ltotal = Ldiff + Ltopo. (8)

2.2.2. Inference to generate text-like embedding

At inference, given eM, we optionally apply forward noising at step
s∗ with ϵ∼N (0, I), and then run the learned reverse trajectory to



Fig. 2: Visualization of embeddings on AudioCaps using UMAP.
Red line means the pair of audio and text embeddings. Green line
means the pair of text-like and original text embeddings.

s=0 using DDIM sampler [16]:

eMs∗ =
√
ᾱs∗ e

M+
√

1− ᾱs∗ ϵ, (Forward) (9)

êt=DDIM
(
ϕθ, e

M
s∗ , s∗→0

)
, (Reverse) (10)

The output êt is a text-like embedding.

2.3. LLM-based Text Decoding

Given a text-like embedding êt, a projection head maps it to a soft-
prefix vector p ∈ Rmh. Here m denotes the number of learnable
soft tokens and h denotes the decoder hidden size. We then project
p into soft-prefix tokens sequence p ∈ Rm×h and feed this sequence
to the decoder. If we optionally prepend a fixed instruction prompt
of n tokens, the resulting input becomes p ∈ R(m+n)×h.

We consider two training options for our LLM decoder frame-
work: (i) text-only training: using text-driven êt with an instruc-
tion prompt. (ii) fully supervised training: using audio-driven êt

without an instruction prompt. We train the LLM decoder with the
standard autoregressive cross-entropy objective

LCE = −
L∑
l=1

log pψ
(
wl|w<l,p

)
, (11)

where ψ denotes the LLM decoder’s learnable parameters and w =
(w1, . . . , wL) means the target caption tokens. At inference, given
audio data only with optional instruction prompt, and decode tar-
get caption. When the LLM decoder is trained under the text-only
training, this evaluation corresponds to zero-shot captioning.

3. EXPERIMENTAL SETTINGS

3.1. Datasets

For training and evaluation, we conduct all experiments on Audio-
Caps [22], a corpus of ten-second audio clips paired with human-
written captions. We use 48,595 training clips and 944 test clips.
The train split provides one caption per clip, whereas the test split
provides up to five. All audio is resampled to 48kHz. For audio pre-
processing, we compute STFTs with a 1,024 window size and a 480

Table 1: Average cosine similarity scores for various embedding
pairs on AudioCaps. For the CLAP, no transformation is applied, so
êM = eM. We report et · êt←M, where êt←M denotes a text-like
embedding generated from modality M. Transformations are ob-
tained via C3 [11], DB (Diffusion-Bridge) [21], DG (DiffGap) [23],
and our DL (Diffusion-Link). Here, ∼ and ̸∼ indicate matched and
non-matched pairs, respectively.

Comparison Pair Cosine Similarity

CLAP C3 DB DG DL

(a) et ·êt←a(∼) 0.486 0.547 0.528 0.110 0.688
(b) et ·êt←t(∼) 1.000 1.000 0.999 0.334 0.945
(c) et ·êt←a(̸∼) 0.030 0.092 0.000 0.007 0.000
(d) et ·êt←t(̸∼) 0.098 0.158 0.002 0.043 0.001

Table 2: Average cosine similarity scores for various inference for-
ward timestep s∗ during diffusion process on AudioCaps.

Diffusion-Link
Inference forward timestep s∗

100 200 300 400 500

Cosine Similarity 0.688 0.654 0.596 0.510 0.404

hop length, and then form mel-spectrograms with 64 mel-bins. We
train on the train split and report results on the test split.

3.2. Implementation Details and Metrics

For audio-language multimodal encoder, we use the LAION-CLAP
pretrained model [2] and keep it frozen. Following prior work [21],
we apply the same normalization process to the output embed-
dings of CLAP. For Diffusion-Link, we adopt three residual MLP
blocks [32]. We train Diffusion-Link with the Adam [33] optimizer
and a batch size of 128. The base learning rate is set to 1×10−4 and
follows a step-decay schedule, multiplying the rate by 0.97 every
200 steps. We employ an exponential moving average (EMA) of the
model parameters with a decay of 0.995 and use the EMA weights
for inference. We adopt a cosine noise schedule with a total of
T=1000 timesteps. At inference, we employ DDIM [16] sampling
with 5 iteration steps. Before denoising, we apply a shallow forward
noising to s∗=100 and then run the reverse process. For LLM-based
text decoder, we adopt LLaMA2(7B) [5] as the LLM decoder. In the
text-only training, we employ a linear layer with soft prefix tokens
m=1 for the project head and prepend a short instruction prompt;
in the fully supervised training, we use 2 linear layers with m=10
for the project head and no hard prompt. We fine-tune project head
and the LLM using LoRA [34]. LLM training uses AdamW [35]
optimizer with batch size 4 for 50 epochs: the learning rate warms
up over the first 2 epochs with max learning rate 5×10−6, then use
a cosine decay. We also train a baseline multimodal LLM system to
verify the effectiveness of Diffusion-Link, we adopt same setting but
detach only Diffusion-Link module. For evaluation, we adopt the
metrics for modality gap analyzing, including cosine similarity and
visualization using UMAP [36]. For AAC, we use the metrics, ME-
TEOR (ME) [37], CIDEr (CD) [38], SPICE (SP) [39], and SPIDEr
(SD) [40].

4. RESULTS
4.1. Main Results

Effectiveness of Diffusion-Link for Modality Bridging. As shown
in Table 1, Diffusion-Link attains the highest cosine similarity on



Table 3: Performance comparison of AAC models on AudioCaps. External knowledge # is the number of non-audio samples used by the
LLM at test time. For a fair comparison on the embedding-level modality-gap problem, † results use only embedding-level RAG without
external k-caption selection.

Method Encoder
output dim.

External
knowledge # ME↑ CD↑ SP↑ SD↑

Zero-shot Captioning
ZerAuCap [24] 1×D 527 12.3 28.1 8.6 18.3
DRCap† [25] 1×D 450,000 21.8 59.5 15.7 37.6
Zhang et al. [26] 1×D No 22.0 64.4 15.6 40.0
WSAC [27] 1×D 46,000 24.1 63.3 17.3 40.3
Ours 1×D No 24.2 73.2 17.5 45.4

Fully Supervised Captioning
Prefix AAC [28] T ×D No 24.0 73.3 17.7 45.5
RECAP [29] T ×D 600,000 25.6 75.1 18.6 47.1
EnCLAP-large [30] T ×D No 25.5 80.3 18.8 49.5
CLAP-ART [31] T ×D No 25.6 80.7 18.8 49.8
Ours 1×D No 25.6 82.5 18.9 50.7

Table 4: Ablation study to analyze the effectiveness of diffusion-
based modality bridging method.

Method ME↑ CD↑ SP↑ SD↑
Zero-shot Captioning
Baseline (CLAP & LLaMa2-7B) 21.2 48.0 14.4 31.2

+ Diffusion-Bridge [21] 23.3 62.6 16.5 39.5
+ Diffusion-Link (Ours) 24.2 73.2 17.5 45.4

Fully Supervised Captioning
Baseline (CLAP & LLaMa2-7B) 25.0 76.9 18.6 47.7

+ Diffusion-Bridge [21] 25.2 77.1 18.0 47.4
+ Diffusion-Link (Ours) 25.6 82.5 18.9 50.7

matched audio–text pairs. While most approaches improve over
CLAP, DiffGap underperforms, because it generates from pure
Gaussian noise with the input embedding condition, which weak-
ens information reconstruction. By contrast, Diffusion-Link treats
the input embedding as residing at an intermediate reverse step,
thereby minimizing information loss and ensuring high-quality gen-
eration along the reverse trajectory. Importantly, Diffusion-Link
also yields the lowest similarity on non-matched pairs, indicating
not merely a global contraction of the space but maintaining seman-
tic information. Figure 2 visualizes this effect. Both the generated
text-like embeddings from audio and text embeddings all move to-
ward the ground-truth text embedding distribution, demonstrating
that Diffusion-Link has learned a stable generative modality bridge
for the text embedding distribution, regardless of the input modality.

Diffusion-Link Amplifies Multimodal Encoder-LLM Coupling.
Table 3 compares a range of AAC systems. In contrast to many

prior methods that leverage longer audio representations or external
knowledge (e.g., RAG), our multimodal LLM system captures in-
put audio feature with only a single 1×D text-like embedding pro-
duced by Diffusion-Link, and achieves SOTA in both zero-shot and
fully supervised captioning without external knowledge. Notably,
considering that most prior zero-shot models rely heavily on exter-
nal knowledge, outperforming them without any external knowledge
demonstrates the significant efficiency of Diffusion-Link.

According to Table 4, our baseline LLM-based AAC system is
not competitive relative to prior AAC systems in Table 3. However,
applying Diffusion-Link markedly improves the same backbone. In
zero-shot audio captioning, we observe a 52.5% relative increase in

CIDEr together with substantial gains on the other metrics. These
dramatic gains demonstrate that Diffusion-Link is the key factor and
reaffirm the primacy of modality-gap reduction over using longer au-
dio representations or external knowledge. Moreover, in fully super-
vised audio captioning we observe up to 7.3% relative improvement,
underscoring our method’s applicability.

4.2. Ablation Studies

We conduct ablations to analyze how the depth of forward noising
affects modality bridging and high-quality generation. According to
Table 2, increasing the inference forward timestep s∗ from shallow
levels initially keeps similarity quite stable; beyond a threshold, the
similarity drops sharply as s∗ increases. This indicates that over-
noising pushes representations deeper into the common Gaussian
space and erases information, thereby degrading semantic preser-
vation in the reconstructed text-like embeddings.

This finding is consistent in AAC results. In Table 1, the simi-
larity score of Diffusion-Bridge is similar to that of Diffusion-Link
when s∗ is between 300 and 400. This suggests that the performance
of Diffusion-Bridge corresponds to over-noising of Diffusion-Link,
which aligns with the observed semantic information loss. Further-
more, under the same multimodal LLM system, the AAC results
in Table 4 follow the same pattern: attaching Diffusion-Link yields
large gains, whereas using Diffusion-Bridge provides only limited
improvements. Together, the three tables show that excessive for-
ward noising reduces similarity and weakens bridging, which in turn
harms downstream performance; conversely, choosing an appropri-
ate s∗ maximizes content preservation in the text-like embedding,
strengthens conditioning-distribution alignment for the LLM de-
coder, and translates into AAC gains.

5. CONCLUSION
We introduced Diffusion-Link, a lightweight residual MLP diffu-
sion module that bridges audio embeddings to the text embedding
distribution without keeping the multimodal encoder frozen. The
method aligns the conditioning input by increasing matched simi-
larity and decreasing mismatched similarity. On AAC, it improves
the same multimodal LLM baseline by 52.5% and 7.3% without
external knowledge for zero-shot and fully supervised AAC, respec-
tively. This plug-and-play approach of Diffusion-Link is expected to
generalize beyond audio captioning and enable effective zero-shot
performance in a variety of multimodal LLMs.
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