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Abstract
A primary challenge when deploying speaker recognition systems
in real-world applications is performance degradation caused by
environmental mismatch. We propose a diffusion-based method
that takes speaker embeddings extracted from a pre-trained speaker
recognition model and generates refined embeddings. For training,
our approach progressively adds Gaussian noise to both clean and
noisy speaker embeddings extracted from clean and noisy speech,
respectively, via forward process of a diffusion model, and then
reconstructs them to clean embeddings in the reverse process. While
inferencing, all embeddings are regenerated via diffusion process.
Our method needs neither speaker label nor any modification to the
existing speaker recognition pipeline. Experiments on evaluation
sets simulating environment mismatch scenarios show that our
method can improve recognition accuracy by up to 19.6% over
baseline models while retaining performance on conventional
scenarios. We publish our code here1.
Index Terms: speaker recognition, diffusion probabilistic model,
representation enhancement, real-world environment

1. Introduction
Speaker recognition systems are widely used in various fields

such as user authentication, security, and voice interfaces. However,
differences in recording equipment, background noise, and other
environmental factors in real-world conditions can introduce substan-
tial acoustic discrepancies between utterances from the same speaker,
degrading the recognition performance [1, 2]. Consequently, achiev-
ing robustness against such domain or environment mismatches
has become a critical challenge for real-world applications.

Such domain mismatch problems, including environment
mismatch scenarios, ultimately widen the gap in the speaker
embedding space and reduce the speaker identity similarity among
different utterances from the same speaker. To mitigate this problem,
a variety of methods have been proposed, including training with
large-scale datasets [3, 4] containing real-world noise, simulating
diverse noise conditions through data augmentation [5, 6], and
leveraging Disentangled Representation Learning (DRL) [2, 7, 8]
techniques to separate and suppress task-irrelevant information.
Although these approaches have shown some effectiveness,
they often require complex network architectures, numerous
hyperparameters, and extensive training resources.

Recently, Diffusion Probabilistic Model (DPM) [9, 10] has
gained significant attention as a powerful generative model, capable
of producing high-fidelity data in various domains, such as image
generation and speech enhancement. The core principle of DPM
is to incrementally inject noise (Forward process) into the data until
it approximates a Gaussian distribution, and then gradually remove
this noise (Reverse process) to recover the original data distribution.

1Official code: https://github.com/kaistmm/seed-pytorch
†Currently at Apple

In the audio domain, DPM-based techniques have primarily been
explored for front-end signal enhancement, where noisy waveforms
or spectrograms are transformed into cleaner signals before being
used by downstream tasks. Although these studies effectively
extend existing noise suppression and filtering methods, they
generally operate on raw audio signals, offering no guarantee of
directly resolving domain mismatch in the speaker embedding space.
Thus, applying diffusion models at the embedding level, where
speaker identity is explicitly encoded, remains largely unexplored,
leaving open the question of whether front-end audio enhancement
alone can ensure higher-quality speaker embeddings.

In this study, we propose a novel DPM-based approach that min-
imises the discrepancy between speaker embeddings extracted from
clean and noisy speech samples. Our method is built on the assump-
tion that, since both the clean embedding and the noisy embedding
(obtained from noisy audio) inherently encapsulate the same speaker
identity, their difference in the embedding space is not excessively
large. By applying the forward DPM process, we progressively add
Gaussian noise to both clean speaker embedding and noisy speaker
embedding, causing their distributions to converge toward an almost
identical Gaussian representation. Subsequently, the reverse process
incrementally removes the noise, reconstructing the embeddings
into a clean form. In this process, even embeddings extracted under
adverse conditions are refined into more clean representations,
ensuring that utterances from the same speaker remain closely
aligned in the embedding space, regardless of external recording
factors. We refer to this DPM-based approach as the Speaker
Embedding Enhancement Diffusion (SEED) model. To the best
of our knowledge, SEED is the first attempt in speaker recognition
to apply a diffusion model directly at the embedding level.

Our proposed SEED has several benefits. It requires no ad-
ditional training or structural modifications to an already-trained
speaker recognition model, making it versatile. It can be trained and
applied on top of arbitrary speaker embeddings. Secondly, SEED
does not rely on speaker labels; a corpus of clean speech where
acoustic augmentation can be applied is enough — there are mil-
lions of hours of such data, e.g., corpus designed for ASR or TTS.
Lastly, SEED’s lightweight architecture, based on simple residual
fully-connected (fc) blocks, demonstrates robust performance under
environment mismatch condition, surpassing existing methods. Em-
pirical evaluations across diverse speaker recognition systems and
datasets show that SEED improves speaker identification accuracy
by up to 19.6% over baseline methods in mismatched conditions, un-
derscoring the potential of embedding-level diffusion as a fundamen-
tal solution for real-world speaker recognition system deployments.

2. Related works
2.1. Diffusion Probabilistic Model

Diffusion probabilistic models (DPMs) [9, 10] have emerged as
a powerful generative framework for high-fidelity data generation



Figure 1: Illustration of Speaker Embedding Enhancement Diffusion (SEED) model. (a) explains the concept of our diffusion mechanism. (b)
shows the whole training process of SEED. (c) illustrates the architecture of SEED.

across various domains [11, 12, 13]. These models operate through
a forward process that gradually corrupts data with Gaussian
noise, followed by a reverse process that reconstructs the original
data distribution. However, diffusion models require numerous
sampling steps, leading to slow inference. To address this, more
efficient techniques, such as the Denoising Diffusion Implicit Model
(DDIM) [10], have been introduced, utilising a non-Markovian
process to accelerate sampling. In this work, we employ DDIM
sampling to reduce the number of reverse steps while maintaining
the quality of generated embeddings.
2.2. Feature enhancement
Speech enhancement. Speech enhancement primarily aims
to reduce noise and reverberation. Traditional approaches rely
on spectral subtraction [14], Wiener filtering [15], or statistical
methods [16]. More recently, deep learning has enabled data-driven
techniques, including DNN-based autoencoders [17], CNNs [18],
GANs [19], VAEs [20], and diffusion-based restoration [21]. How-
ever, integrating these enhanced signals into downstream tasks often
proves challenging: while intelligibility may improve, distortions
can arise that compromise speaker-specific information [22, 23].
Joint optimisation efforts [24, 25] highlight the difficulty of fully
preserving speaker-relevant features in enhancement-based speaker
recognition systems.
Speaker embedding enhancement. Enhancing speaker embed-
dings to address domain mismatch has been extensively studied.
Early methods based on i-vector and x-vector frameworks employed
PLDA and length normalisation [26], but these often degrade
under severe noise or unseen conditions. DRL aims to isolate
speaker identity from nuisance factors [8, 2], yet typically demands
additional labeling and design of specialised training objectives.
More recently, refining extracted speaker embeddings has shown
promise for mitigating domain shifts; for instance, [27] proposed
post-processing to reduce variability introduced by recording
conditions. Our work proposes a diffusion-based approach that
enhances speaker embeddings directly, requiring no speaker labels
and allowing the use of clean speech datasets of various audio tasks.

3. Proposed method
This section describes the configuration of our proposed SEED,

including the batch setup with audio augmentation and the speaker
embedding extraction process. The concept, process, and model
structure of our methodology are shown in Figure 1.
3.1. Batch configuration with multi-pair audio augmentation

To simulate environment mismatch scenarios, we configure
each mini-batch to contain pairs of clean and noisy audio data. Since

the task involves transforming speaker embeddings extracted from
noisy audio to match those from clean audio, it is essential to ensure
that both embeddings share the same speaker identity and content.
Noisy audio samples are generated through audio augmentation
applied to one clean audio data aclean. Specifically, perturbations
such as environmental noise and reverberation are introduced to
simulate diverse real-world conditions. This process produces N
noisy variants, a0

noisy,a
1
noisy,...,a

N-1
noisy, where each variant retains the

same content as the clean audio but exhibits different acoustic char-
acteristics. These variants allow the diffusion model to generalise
by learning robust reconstruction paths in the reverse process. For
the i-th mini-batch, the paired audio data can be represented as:

(aclean,{a0
noisy,a

1
noisy,...,a

N-1
noisy}).

Details of audio augmentation techniques are further described
in Section 4.

3.2. Speaker embedding extractor
Our method utilises a pre-trained speaker embedding network

that is not jointly optimised with SEED. This network extracts
a D-dimensional speaker embedding vector from input audio
a, capturing essential speaker identity features. The speaker
embedding extraction process can be expressed as:

x0=SpeakerNet(aclean), x0∈RD,

where x0 is the corresponding clean speaker embedding and
SpeakerNet denotes speaker embedding network. Similarly,
embeddings extracted from input noisy audio aknoisy are denoted
by yk

0 , where k indicates the k-th noisy variant. The embedding
network typically consists of three main components: a feature
extraction module (e.g., STFT or convolutional layers), an encoder
network, and a pooling mechanism that aggregates temporal features
into a fixed-size vector. These embeddings are then passed to the dif-
fusion model for further enhancement. More details of the speaker
embedding network architecture will be presented in Section 4.

3.3. Speaker Embedding Enhancement Diffusion
Our SEED builds upon the Denoising Diffusion Probabilistic

Model (DDPM) [9], extending it to handle both clean and noisy
speaker embeddings in a unified framework. This section first re-
visits the basic DDPM formulation based on ϵ-prediction (estimates
Gaussian noise), then illustrates how we adapt it to directly estimate
a clean speaker embeddingx0 from the noisy speaker embeddingy0

via sample-prediction (estimates target sample directly) formulation.

3.3.1. Basic DDPM Formulation
Let x0 ∼ q(x0) be the original data (in our case, a speaker

embedding). A forward diffusion process q(xt |x0) progressively



corrupts x0 with Gaussian noise over t∈{1,...,T} steps, defined as:
q(xt|x0)=N (xt;

√
ᾱtx0,(1−ᾱt)I), (1)

where αt∈ (0,1) is a noise scheduling parameter, αt=
∏t

τ=1ατ ,
and I is the identity matrix. To estimate q(xt−1|xt), the parame-
terised reverse process pθ(xt−1 | xt) aims to denoise xt back to
xt−1:

pθ(xt−1 |xt)=N
(
xt−1;µθ(xt,t),σ

2
t I
)
, (2)

where a neural network parameterised by θ predicts the mean
µθ(xt,t), and σ2

t =1−αt follows the same noise schedule. With
standard DDPM, it is typically trained θ by minimising a variational
lower bound on the data likelihood. As mentioned Section 2.1, we
adopt an implicit sampler [10] (DDIM).
3.3.2. Diffusion Process of SEED

In forward process (the red arrow dash lines in Figure 1-a), we
interpret x0 as a clean speaker embedding and y0 as its noisy coun-
terpart. Applying Eq. (1), we can sample a corrupted state xt via

xt=
√
αtx0+

√
1−αtϵ, ϵ∼N (0,I), (3)

and similarly, a corresponding corrupted noisy embedding yt can
be written as

yt=
√
αty0+

√
1−αtϵ. (4)

Thus, xt and yt are Gaussian corrupted embeddings, each from
x0 and y0, reparameterised with ϵ.

In reverse process (the green arrow dash lines in Figure 1-a),
based on Eq. (2), the reverse step pθ(xt−1 |xt) is instantiated by
a network ϵθ that does ϵ-prediction which estimates ϵ, yielding the
reconstruction (xt→x0) as:

x̂0(xt,t)=
1√
αt

(
xt−

√
1−αtϵθ(xt,t)

)
. (5)

This reconstructs the clean embedding x0 from xt. However,
standard DDPM addresses only a single distribution (either q(x0)
or q(y0)), whereas SEED also seeks reconstruction of y0 from yt

to be closer to x0. To achieve this, we consider Eq. (5) for y0 as:

ŷ0(yt,t)=
1√
αt

(
yt−

√
1−αtϵθ(yt,t)

)
≈x0. (6)

Unlike the standard reverse process (xt→x0) or (yt→y0), this
cross-reconstruction (yt→x0) acts as noise removal in the speaker
embedding space.
3.3.3. Training Objective

SEED jointly considers two objectives: (i) learning distribution
of clean speaker embedding x0 for high-quality sampling, and
(ii) learning the reverse process of (yt → x0) for embedding
enhancement of Eq. (6) via direct optimisation of

||x0−ŷ0(yt,t)||, (7)
which introduces an additional scaled noise term as

||x0−ŷ0(yt,t)||=
∣∣∣∣∣∣ 1√

αt

(
xt−

√
1−αtϵ

)
− 1√

αt

(
yt−

√
1−αtϵθ(yt,t)

)∣∣∣∣∣∣ (8)

in terms of ϵ-prediction. Rearranging the terms within the norm
reveals

xt−yt=
√
αt

(
x0−y0

)
,

which acts as an additional scaled noise factor. If ||x0−y0|| is large,
this scaled noise term may destabilise the training of the reverse
process. However, under our assumption that x0 and y0 come from
the same utterance of the same speaker, we expect the scaled noise
to be moderate and the model learns to regress the scaled noise
for each timestep accordingly. Furthermore, the multi-pair audio
augmentation in Section 3.1 ensures the model encounters diverse
noisy variants {yk

0} around each x0, improving generalisation to
various scaled noise patterns.

Finally, we propose a loss function that can implicitly optimise
the scaled noise and epsilon terms via sample-prediction:

LSEED=E
[
||x0−fθ(xt,t)||+

N−1∑
k=0

||x0−fθ(y
k
t ,t)||

]
, (9)

Here, fθ denotes the trainable SEED network. Specifically, fθ(xt,t)
and fθ(y

k
t ,t) directly predict x̂0 and ŷk

0 , respectively. As a result,
SEED can (i) ensure high-quality speaker embedding generation for
clean samples and (ii) remove noise from yk

t effectively, all within
a unified diffusion framework.

4. Experiments
4.1. Model Configuration
4.1.1. Speaker embedding network

We employ three pre-trained speaker embedding networks.
For the spectrogram-based speaker network, we selected ‘H /
ASP’ version of ResNet34 [28] and ECAPA-TDNN [29]. For the
raw-waveform-based speaker network, we chose ECAPA-TDNN
network combined with ‘WavLM Base+’ version of WavLM [30],
named WavLM-ECAPA. The output speaker embedding
dimensions of the ResNet34, ECAPA-TDNN, and WavLM-ECAPA
models are 512, 256, and 192, respectively.
4.1.2. Speaker Embedding Enhancement Diffusion (SEED)

The SEED model adopts a representation diffusion model
(RDM) [32] network composed of residual fc blocks. Each
residual fc block consists of an input layer, a timestep embedding
projection layer, and an output layer, where each layer includes a
LayerNorm [33], a SiLU [34], and a linear layer. RDM [32] network
is illustrated in Figure 1-c. For all baseline speaker recognition
models, we use three residual fc blocks without the optional context
layer, following the same configuration as [32]. Additionally, the
hidden unit size of each layer within the fc blocks is set to twice the
dimension of the speaker embedding used in each baseline model.
4.2. Implementation details
Datasets. For training, we use approximately 1,000 hours of clean
speech data, comprising 460 hours from LibriTTS-R [35] and
577 hours from Libri-Light [36]. Notably, no speaker labels
are required, as our training only depends on clean speech data.
For evaluation, we employ five evaluation protocols: the three
VoxCeleb1 variants (Vox1-O, Vox1-E, and Vox1-H) to evaluate
generalisation performance, and VoxSRC23 [37] along with
VC-Mix [38] to evaluate environment robustness, as these latter
datasets reflect environment mismatch scenarios.
Multi-pair audio augmentation. For multi-pair audio augmen-
tation, we generate three types of noisy speech from each clean
utterance by applying reverberations from a simulated RIR dataset
[6] and music and background noises from MUSAN [5]. The SNR
is randomly selected within 0–15 dB for background noise and
5–15 dB for music noise. Consequently, each utterance forms a set
of four paired samples (one clean and three noisy variants).
Training & Inference. All of our experiments utilise the
PyTorch framework [39] together with the open-source vox-
celeb trainer2. We select AdamW Optimizer [40] with an
initial learning rate of 0.0005. Our implementation is conducted on
a single NVIDIA RTX 4090 GPU with 24 GB memory. Training
takes around 60 epochs. For the diffusion process, we use a scaled
linear noise schedule with 1,000 training timesteps T in the DDIM
sampler [10] from diffusers3.

In the inference step, we assume that all input speaker
embeddings will be yt and regenerate them via the diffusion process
of SEED. Unlike typical DDIM sampling, our sample-prediction

2https://github.com/clovaai/voxceleb_trainer
3https://github.com/huggingface/diffusers



Table 1: EER and minDCF Results on five evaluation sets. boldface score indicates that the model achieved the highest performance among
the comparison groups on the same baseline and evaluation set. → means passing the output from the left model to the right model. + means
scratch training the baseline network with additional strategies or networks on the right. ↑ indicates performance improvement over baseline.

Environmental mismatch set Generalization set

VoxSRC23 VC-Mix Vox1-O Vox1-E Vox1-H

Model EER minDCF EER minDCF EER minDCF EER minDCF EER minDCF

Baseline

ResNet34 [28] 5.50 0.308 3.07 0.245 0.88 0.079 1.07 0.076 2.21 0.147
ECAPA-TDNN [29] 5.93 0.335 2.96 0.261 0.90 0.064 1.16 0.081 2.38 0.152
WavLM-ECAPA [30] 5.07 0.283 2.32 0.195 0.83 0.063 0.98 0.058 1.92 0.115

Disentangled Representation Learning

ResNet34 + DRL [2] 5.35↑ 0.306↑ 2.58↑ 0.223↑ 0.86↑ 0.068↑ 1.10 0.078 2.20↑ 0.142↑
ECAPA-TDNN + DRL [2] 5.81↑ 0.325↑ 2.43↑ 0.212↑ 0.82↑ 0.067 1.16 0.080↑ 2.38 0.156

Embedding Enhancement Diffusion

ResNet34 [28] → SEED 5.31↑ 0.303↑ 2.56↑ 0.219↑ 0.87↑ 0.079 1.09 0.076 2.23 0.149
ECAPA-TDNN [29] → SEED 5.53↑ 0.309↑ 2.38↑ 0.227↑ 0.86↑ 0.069 1.20 0.083 2.30↑ 0.148↑
WavLM-ECAPA [30]→ SEED 4.94↑ 0.280↑ 2.29↑ 0.200 0.81↑ 0.065 0.97↑ 0.058 1.92 0.115

Table 2: Performance comparison between conventional audio enhancement-based approach and our embedding enhancement diffusion-based
approach. → means passing the output from the left model to the right model. Params (M) denotes the number of model parameters in millions,
RTF (Real-Time Factor) indicates the processing speed relative to real-time for end-to-end process, and Memory (GiB) represents the memory
consumption during inference. RTF and Memory measurements are based on 4-second audio size. We report the Equal Error Rate (EER)
for VC-Mix and Vox1-O evaluation set.

Model Params (M) RTF Memory (GiB) VC-Mix Vox1-O

SE [31] → ResNet34 [28] 44.6 0.0041 0.88 5.14 1.21
SE [31] → ECAPA-TDNN [29] 46.6 0.0038 0.88 4.63 1.17
SE [31] → WavLM-ECAPA [30] 137.7 0.0069 2.89 31.29 30.67
SE [31] → WavLM-ECAPA [30] (fine-tuned) 137.7 0.0069 2.89 2.24 0.81

ResNet34 [28] → SEED 20.8 0.0022 0.59 2.56 0.87
ECAPA-TDNN [29] → SEED 18.8 0.0020 0.59 2.38 0.86
WavLM-ECAPA [30] → SEED 105.6 0.0030 2.66 2.29 0.81

approach directly generates the cleansed output embedding from yt

in a single-step. We set the timestep t to 50 for single-step sampling.
Empirically, we observed negligible performance differences
compared to multi-step sampling. For WavLM-ECAPA, we apply
a feature ensemble technique where the original speaker embedding
and SEED’s output embedding are summed to obtain the final
speaker embedding.
Evaluation. We report two metrics: (1) Equal Error Rate (EER),
where false accept and false reject rates converge, and (2) minimum
Detection Cost Function (minDCF) from NIST SRE [41], using
Cmiss = 1,Cfa = 1, and Ptarget = 0.05. For ResNet34 and
ECAPA-TDNN, each utterance is split into ten 4-second segments,
and all segment pairs are evaluated to yield an averaged similarity
score. By contrast, WavLM-ECAPA uses the entire utterance. We
follow the scoring protocols described in [28, 30].

5. Results
In this section, we summarise and analyse our experimental re-

sults. To assess both environment-robustness and generalisation per-
formance across diverse speaker recognition systems, we compare
three baselines, an adversarial DRL-based method [2] designed to
remove environmental factors from the speaker representation, and
our proposed method (SEED). These results are presented in Table 1.
Moreover, we evaluate the practical benefits of our approach com-
pared to an existing audio enhancement-based approach [31], demon-
strating the efficacy of SEED under real-world constraints in Table 2.
Environment-robustness performance. As shown in Table 1,
integrating our SEED framework with each baseline model yields
up to a 19.6% improvement on the environmental mismatch
evaluation sets. Although a DRL approach [2] similarly achieves
notable gains, it requires additional speaker and environment labels
and more complex training procedures. In contrast, SEED requires
no speaker labels and can be trained on a smaller training dataset,
yet delivers competitive or superior outcomes. For example, on
the VoxSRC23 set, applying SEED to ECAPA-TDNN outperforms
the method in [2] by nearly 4.8%. Furthermore, in the VC-Mix set,
ECAPA-TDNN with SEED almost matches the performance of

the WavLM baseline, which is pre-trained on a large datasets and
diverse learning techniques. These results demonstrate that SEED
effectively eliminates residual environmental information hidden
in the speaker representation space, thereby improving the latent
capacity of the speaker recognition system.
Practical and high-fidelity speaker representation generation.
As shown in Table 1, our proposed method not only maintains
remarkable generalisation performances on generalisation
sets—achieving performance that is slightly higher or nearly
indistinguishable from the baselines—but also delivers superior
improvements on environment mismatch evaluation sets. This
indicates that our approach consistently produces high-quality
speaker embeddings. In other words, the diffusion-based paradigm
demonstrates substantial potential for high-fidelity speaker
representation generation at the embedding level.

Table 2 compares a conventional waveform-domain audio
enhancement method with SEED. Despite requiring significantly
fewer parameters, lower memory usage, and a reduced real-time
factor, SEED outperforms most baselines on both VC-Mix and
Vox1-O benchmarks. Notably, WavLM-ECAPA, which directly
processes raw waveforms, suffers significant performance degra-
dation unless it undergoes additional fine-tuning, whereas SEED
provides both computational efficiency and robustness without any
extra training. Consequently, it offers a compelling alternative to
resource-intensive enhancement-based speaker recognition systems.

6. Conclusion
SEED leverages diffusion models for robust and generalised

speaker embedding enhancement without requiring speaker labels
or complex training. It seamlessly integrates with pre-trained
speaker recognition models, enabling immediate deployment in
speaker recognition systems for real-world applications. However,
since SEED learns the gap between clean and noisy embeddings
via the DDPM mechanism, some training instability may occur. To
address this, future work will explicitly model the domain mismatch
gap, ensuring stable generation even in extreme conditions and
broadening SEED’s applicability to diverse speech tasks.
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