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Abstract
This work presents a framework based on feature disentanglement to
learn speaker embeddings that are robust to environmental variations.
Our framework utilises an auto-encoder as a disentangler, dividing
the input speaker embedding into components related to the speaker
and other residual information. We employ a group of objective func-
tions to ensure that the auto-encoder’s code representation – used as
the refined embedding – condenses only the speaker characteristics.
We show the versatility of our framework through its compatibility
with any existing speaker embedding extractor, requiring no struc-
tural modifications or adaptations for integration. We validate the
effectiveness of our framework by incorporating it into two popularly
used embedding extractors and conducting experiments across var-
ious benchmarks. The results show a performance improvement of
up to 16%. We release our code for this work to be available here1.
Index Terms: speaker recognition, disentangled representation
learning, real environment, environment mismatch

1. Introduction
The growth of voice-based AI services has amplified the demand for
robust speaker recognition models capable of operating effectively
in noisy environments. Every audio recording carries not only
the speaker-specific characteristics [1, 2], such as age, gender,
accent [3], emotion [4,5] and language [6,7], but also environmental
information [8] like noise and reverberation. These factors are
intertwined within the speaker representation. While some of these
factors are essential for identifying the speaker, others, particularly
environmental information, can act as obtrusive information, making
speaker recognition more challenging. This issue becomes more
pronounced in an environment mismatch scenario, where changes in
recording conditions – ranging from serene offices to bustling streets
– can drastically alter audio characteristics, to the extent that they
may seem to originate from different individuals. Consequently, the
removal of these intrusive factors from speaker embeddings emerges
as a pivotal step towards enhancing the effectiveness of speaker
recognition systems, ensuring that they can distinguish between
essential speaker-related information and environmental distortions.

Despite the use of datasets [9,10] recorded in various real-world
environments and data augmentation techniques [11, 12], the
emergence of realistic benchmark datasets [13–15] continually
reveals the vulnerability of speaker recognition systems in varied
environment conditions. This highlights the need for a more
fundamental solution that can explicitly exclude environmental
information from speaker representations.

Disentangled representation learning (DRL) [16] emerges as
a reasonable approach for tackling this challenge. DRL seeks to

1Official webpage: https://mm.kaist.ac.kr/projects/voxceleb-disentangler/
Official code: https://github.com/kaistmm/voxceleb-disentangler

independently isolate and manipulate the different factors within
the input data, showing promise across various fields [2,7,17–21].
For example, [7] removes linguistic information from speaker rep-
resentation using an adversarial-based DRL framework for bilingual
speaking scenarios. DRL represents a promising approach, yet its oc-
casional removal of vital information, which can compromise perfor-
mance, highlights the need for continued refinement and exploration.

We propose a novel adversarial learning-based disentangled
representation learning framework that can remove environmental
information from speaker representations while minimising the
loss of speaker information. Traditional adversarial learning-based
DRL ensures effective information removal, but adversarial learning
often distorts task-relevant information, resulting in training insta-
bility [7,22–24]. We introduce a new idea that uses an auto-encoder
as a disentangler to separate environmental information while lever-
aging a reconstruction loss function of the auto-encoder to penalise
unnecessary information loss, thereby mitigating the loss of vital
speaker information during the DRL process. Additionally, we com-
bine a set of objective functions to facilitate the learning of refined
speaker information within the disentangled speaker embedding. To
assist environment-DRL, we employ a regularisation technique that
swaps embeddings of the same speaker from different environmental
origins during the reconstruction process. Another contribution
of our framework is the adaptability to seamlessly integrate with
various existing speaker recognition networks without any structural
modifications. Experimental results show that our framework
demonstrates up to 16% performance improvement over baseline
models and previous DRL framework on various evaluation sets.

We summarise our contributions as follows: (1) We introduce
a novel DRL framework, which leverages an auto-encoder as a
disentangler, to minimise the loss of vital information. (2) Our
framework is easily adaptable to existing speaker networks without
any structural modifications. (3) Our framework shows significant
performance improvements on various evaluation sets reflecting in
the wild conditions and also increases the performance of existing
baseline models on standard benchmarks.

2. Related works

Triplet batch formulation. Our batch formulation is similar to
those found in previous studies [25,26], which employed a triplet
batch formulation – that is, each mini-batch index comprises three
utterances. [25] constructed triplets of utterances from the same
speaker by selecting two utterances from the same video and
the third from a different, non-overlapping video. However, this
approach did not incorporate further data augmentation, ensuring
that the first two utterances were subjected to similar environmental
noises, whereas the third was exposed to distinct noises. [26] also
adopted a triplet batch formulation strategy but without utilising
video session information, extracting all three non-overlapping
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Figure 1: The illustration of the proposed environment-disentangled representation learning framework. Auto-encoder encodes the speaker
network’s entangled speaker representation into a compact latent vector, which is then divided into distinct speaker and environment
representation vectors. Orange box represents a set of objective functions to facilitate the learning of refined speaker and environment
representations from the auto-encoder’s bottleneck representation. Reconstruction training of the auto-encoder minimises the loss of vital
speaker information during the disentangled representation learning.

utterances from a single video and then simulating an environment
mismatch scenario through artificial data augmentation.

Our strategy takes advantage of the studies above. We assemble
the triplets in the same manner as [25] and additionally implement
data augmentation techniques akin to those used by [26].

Feature enhancement using auto-encoder. Auto-encoders have
been widely used to enhance latent embeddings for various pur-
poses [18,20,27]. [27] introduced a method for enhancing speaker
embeddings using an auto-encoder to reduce noise in speaker
diarisation. However, this method did not specifically address
the disentanglement of environmental noise, and the auto-encoder
training was performed online within a diarisation framework using
a single input recording. [18, 20] introduce a disentangling auto-
encoder to reduce background information within audio signal and
sign language embeddings. These studies proposed an embedding
swapping technique to enhance the disentanglement capability.

Our work introduces an auto-encoder-based DRL framework
that, for the first time, targets the disentanglement of environmental
noise in speaker verification. Our proposed framework utilises an
auto-encoder combined with a variety of objective functions. The
framework incorporates adversarial learning and embedding swap-
ping techniques designed to accurately disentangle environmental
noise while preserving the speaker’s fundamental characteristics.

3. Proposed disentanglement framework
This section presents the proposed environment DRL framework, as
illustrated in Figure 1. Employing a set of triplets obtained through
a specialised batch sampling method (Section 3.1), the auto-encoder
condenses and reconstructs the input embeddings, as detailed in
Section 3.2 (Lrecons). Simultaneously, four additional objective
functions (Lenv env, Lenv spk, Lcorr, and Lspk) facilitate the train-
ing process to effectively isolate environmental noise while retaining
essential speaker features, as discussed in Sections 3.3 and 3.4.

3.1. Batch construction with data augmentation

Our batch formulation is essentially identical to that of [25]. Each
mini-batch index consists of three utterances: xi,1, xi,2, and xi,3,
where i denotes the mini-batch index. All three utterances originate
from the same speaker; however, the first two are sourced from an
identical video, and the third is drawn from a different video. This

setup aims to ensure that the first two utterances reflect the same
environmental conditions, whereas the third introduces a distinct
environment.

The novelty in batch construction stems from data augmentation.
In contrast to [25], we apply identical augmentation techniques to
the first two utterances and a different augmentation method to the
third. This further ensures that the first two utterances share similar
environmental noise while the third utterance involves distinct
environmental noise.

3.2. Framework structure and reconstruction

Our disentanglement framework is independent of the speaker
embedding extractor and corresponds to the block denoted as
“Auto-encoder” in Figure 1. The framework inputs an arbitrary
extractor’s embedding, ei,j ∈RDwhere ei,j denotes the extracted
speaker embedding from an input utterance xi,j, j∈{1,2,3}. The
encoder of the auto-encoder projects the input speaker representation
ei,j into a compact representation ezi,j. The decoder reconstructs
êi,j using ezi,j and a reconstruction loss calculates the L1 distance
between the output êi,j and the input ei,j. The reconstruction loss
Lrecons is formulated as follows:

Lrecons=

3∑
j=1

(|ei,j−êi,j|). (1)

On top of the basic reconstruction loss of an auto-encoder introduced
above, our framework employs several additional techniques
and objective functions including adversarial learning loss to
successfully train the model without collapsing or deteriorating.

3.3. Code swapping between different environments

Within the auto-encoder, the code ezi,j is further split into a speaker
representation espki,j ∈ Rd and an environment representation
eenvi,j ∈ RD−d as shown in the middle part of Figure 1. Among
a pair of triplets, we swap espki,2 with espki,3 . This process guides
the model to condense core speaker characteristics in espki,j while
environmental noise is projected to eenvi,j . Note that we do not apply
code swapping to ezi,1



3.4. Discriminator training

To learn fine-grained speaker and environment information within
the two outputs from the encoder, espki,j and eenvi,j , respectively, we
train a total of three discriminators: A speaker discriminator S and
two environment discriminators EE and ES.

The speaker discriminatorS computes the speaker classification
loss Lspk from espki,j to perform speaker recognition training. For
Lspk, we employ a combination loss function, which is proposed
in [28], with an angular prototypical loss [29] and a vanilla softmax
loss. For the M value of the angular prototypical loss [29], we use
M=3; one sample espki,1 from i-th triplet as a query set and other
two samples espki,2 and espki,3 as a support set. For the vanilla softmax
loss, the speaker discriminator S uses one fully-connected layer
f to map espki,j to a speaker class vector.

The environment discriminator EE computes the environment
loss function Lenv env by passing the environment-specific
representation to an environment classifier g for environment
recognition training. For the environment loss function, we employ
a triplet loss as follows:

pos dist=
∥∥g(eenvi,1 )−g(eenvi,2 )

∥∥2

2

neg dsit=
∥∥g(eenvi,1 )−g(eenvi,3 )

∥∥2

2

Lenv env=max(0,m+pos dist−neg dist)

(2)

where m is the margin of the triplet loss. The environment loss
function ensures that the environment discriminator develops the
ability to distinguish environment representations, making similar
environment representations from the same video closer and those
from different videos further apart.

3.5. Adversarial learning
The environment discriminator ES performs to capture any
residual environmental information from the disentangled speaker
representation espki,j . ES uses the same network structure and loss
function as EE, but they not share any parameters. Lenv spk is equal
to Eq. 2, except that Lenv spk replaces the input eenvi,j with the espki,j .
Since ES should be trained independently, ES is not connected
to other neural networks, and the gradient is not propagated below
the input data espki,j .

To explicitly remove residual environmental information from
the speaker representation espki,j , we employ a combination of the
gradient reversal layer (GRL) with the correlation minimisation loss
proposed by [7]. The GRL is attached in front of the environment
discriminator ES, which inverts the gradient of the loss function
Lenv spk, interfering with loss minimisation. By the GRL, our
framework learns the speaker representation espki,j that disrupts the
environment discriminator ES, thereby inducing the removal of
the residual environmental information. We denote the loss function
Lenv spk passing through the GRL as Lenv spk(G). As an additional
regularisation, we employ the mean absolute pearson correlation
(MAPC) loss, used in [7,23], to minimise the correlation between
speaker and environment representations. This loss function is
denoted as Lcorr and is formulated as follows:

Lcorr=
|Cov(espki,j ,eenvi,j )|
σ(espki,j )·σ(eenvi,j )

(3)

where Cov(·) and σ(·) mean the covariance and the standard
deviation, respectively.
In summary, the overall loss function is defined as follows:

Ltotal=λS∗Lspk+λR∗Lrecons+λE∗Lenv env

+λadv∗Lenv spk(G)+λC∗Lcorr

(4)

where the lambda values are the weight values of losses summation.
Same as the training process of [7], for the same mini-batch,
Ltotal updates the framework modules excluding the environment
discriminator ES and Lenv spk updates only the ES.

4. Experiments
4.1. Input representations

First, we randomly extract a 2-second audio segment from each
utterance and apply pre-emphasis with a coefficient of 0.97. We
transform the input signal into a spectrogram with a 25ms window
size, 10ms stride size, and a hamming window and use it as
input data for the speaker network. For the ResNet-34, we use a
64-dimensional log mel-spectrogram as the input data and applied
instance normalisation [31] to the input. For the ECAPA-TDNN,
we use 80-dimensional log mel-spectrogram as the input.

4.2. Model architecture

To demonstrate the compatibility of the proposed method on existing
speaker recognition systems, we employ two existing models, the
variant of ResNet-34 proposed in [28] and ECAPA-TDNN [30].
Note in this paper, we do not use the residual fully-connected
layers following the pooling layer of both speaker networks. To
compare our framework with the prior adversarial learning-based
DRL model, we employ the GRL-based framework proposed in [7].

ResNet-34. We choose ‘H / ASP’ version model mentioned in [28],
which uses the attentive statistic pooling (ASP) [32] layer.

ECAPA-TDNN. ECAPA-TDNN [30] is a neural network, which
consists of a series of 1-dimensional Res2Blocks. ECAPA-TDNN
uses the channel- and context-dependent statistics pooling layer. We
employ the large-size model used in [30].

Auto-encoder. The auto-encoder’s encoder and decoder each consist
of one batch normalisation layer followed by one fully-connected
layer, sequentially. The input and output dimension sizes of the
encoder and decoder are symmetrical. For the encoder, the input
dimension size matches the output size of the speaker network’s
pooling layer, while the dimension size of the output vector ez

is 1024 and 512 for ResNet-34 and ECAPA-TDNN, respectively.
The latent representation ez is divided in half, equally split into the
espk and the eenv. Before being passed to the decoder, we use L1
normalisation to both espk and eenv independently.

Discriminator. For the speaker discriminator S, we use just one
fully-connected layer as f for the cross-entropy loss. Therefore, the
output dimension size of the f is the same as the number of speaker
classes. For the g of the environment discriminatorsEE andES, we
use two MLP layers and each MLP layer consists of a batch normal-
isation layer, an ELU [33] activation function, and a fully-connected
layer, sequentially. For ResNet-34 and ECAPA-TDNN, the output
sizes of the first MLP layer are 512 and 256, respectively, and the
output sizes of the last MLP layer are 512 and 128, respectively.

4.3. Implementation details

Datasets. For training, we use the development sets from
VoxCeleb2 [10]. Since the VoxCeleb datasets provide video
session information for each speaker, we can utilise the video
session information for the batch configuration described in Section
2.1. For evaluation, we select 6 multiple evaluation sets: three
evaluation protocols utilising VoxCeleb1 [9], VoxSRC22 [15]
and 23, and VC-Mix [34]. VoxSRC 22&23 and VC-Mix are the
evaluation sets that reflect the environment mismatch problem. For
data augmentation, we employ reverberations of simulated RIRs



Table 1: EER and minDCF on (a) VoxSRC22&23 and VC-Mix evaluation sets, (b) VoxCeleb1-based evaluation sets. All experiments are
repeated three times, and we report the mean and the standard deviation. GRL [7]: a prior work of the adversarial learning-based DRL
framework using the gradient reversal layer;

Model VoxSRC22 VoxSRC23 VC-Mix

EER (%) minDCF EER (%) minDCF EER (%) minDCF

ResNet-34 [28] 3.25 ± 0.041 0.211 ± 0.0013 5.91 ± 0.096 0.323 ± 0.0028 3.05 ± 0.091 0.245 ± 0.0051
+ GRL [7] 3.15 ± 0.101 0.209 ± 0.0086 5.60 ± 0.130 0.314 ± 0.0062 2.95 ± 0.207 0.253 ± 0.0157
+ Ours 2.95 ± 0.047 0.193 ± 0.0067 5.35 ± 0.126 0.306 ± 0.0024 2.58 ± 0.113 0.223 ± 0.0132

ECAPA-TDNN [30] 3.25 ± 0.038 0.210 ± 0.0015 5.92 ± 0.016 0.328 ± 0.0018 2.92 ± 0.145 0.254 ± 0.0057
+ GRL [7] 3.22 ± 0.130 0.203 ± 0.0074 5.85 ± 0.105 0.297 ± 0.0056 2.62 ± 0.131 0.211 ± 0.0089
+ Ours 3.11 ± 0.065 0.199 ± 0.0075 5.81 ± 0.090 0.325 ± 0.0006 2.43 ± 0.059 0.212 ± 0.0008

(a) Results on VoxSRC22&23 evaluation sets and VC-Mix.

Model Vox1-O Vox1-E Vox1-H

EER (%) minDCF EER (%) minDCF EER (%) minDCF

ResNet-34 [28] 0.95 ± 0.051 0.076 ± 0.0048 1.26 ± 0.028 0.089 ± 0.0022 2.51 ± 0.038 0.162 ± 0.0007
+ GRL [7] 1.13 ± 0.053 0.083 ± 0.0078 1.16 ± 0.035 0.081 ± 0.0019 2.34 ± 0.033 0.153 ± 0.0021
+ Ours 0.86 ± 0.024 0.068 ± 0.0047 1.10 ± 0.010 0.078 ± 0.0015 2.20 ± 0.016 0.142 ± 0.0031

ECAPA-TDNN [30] 0.89 ± 0.024 0.072 ± 0.0093 1.16 ± 0.003 0.081 ± 0.0006 2.39 ± 0.003 0.153 ± 0.0006
+ GRL [7] 0.90 ± 0.046 0.076 ± 0.0030 1.19 ± 0.025 0.083 ± 0.0022 2.51 ± 0.035 0.163 ± 0.0024
+ Ours 0.82 ± 0.006 0.067 ± 0.0016 1.16 ± 0.011 0.080 ± 0.0021 2.38 ± 0.007 0.156 ± 0.0006

(b) Results on VoxCeleb1-based evaluation sets.

dataset [12] and noises from the MUSAN dataset [11].

Training. All experiments are based on the PyTorch framework [35]
and open-source voxceleb trainer2. We use mixed
precision training and the Adam Optimizer [36] with an initial
learning rate of 0.001. ResNet-34-based experiments have a
batch size of 220 and reduce the learning rate by 25% every 16
epochs. ECAPA-TDNN-based experiments have a batch size of
256 and decrease the learning rate by 25% every 8 epochs. Our
implementation is performed on a single NVIDIA RTX 4090 GPU
with 24 GB memory. Only the value of λadv is 0.5 and the values
of other λ are 1. The training takes around 300 epochs. For all
statistic pooling layers in the baseline and our models, all mean
pooling parts are replaced with l2-norm pooling [37].

Evaluation. We use three datasets, VoxSRC22&23 and VC-Mix, as
evaluation sets to measure the environment robustness performance.
Since the three datasets, Vox1-O, Vox1-E, and Vox1-H, are not
designed to be dependent on a specific factor, we evaluate the
generalisation performance of these three datasets. We measure the
performances by two metrics: 1) the Equal Error Rate (EER), where
the rates of False Rejections (FRR) and False Alarms (FAR) are
identical, and 2) the minimum Detection Cost Function (minDCF)
described in NIST SRE [38], which is a weighted sum of FRR
and FAR. For minDCF, we use the parameters Cmiss=1, Cfa=1
and Ptarget =0.05. We sample each utterance into ten segments
of 4 seconds each and compute the similarity across all segment
pair combinations. The average similarity score is used as the trial’s
final score. This scoring is mentioned in [28].

5. Results
Our experimental results are summarised in Table 1. We compare
three versions of each model, baseline, using only GRL [7] and
using our framework. For reliable measurements, we train all
models three times with different random seeds and report the mean
and the standard deviations. We use the standard deviation values to
measure the training stability of models. Table 1a demonstrates the
performances under wild environmental condition evaluation sets.
Table 1b shows the performances for VoxCeleb1-based evaluation
sets to investigate the adaptability of our framework.

2https://github.com/clovaai/voxceleb_trainer

Environment-disentangled representation. As observed in
Table 1a, both baseline models exhibit the lowest performances
on wild environment evaluation sets, revealing vulnerabilities
to the environment mismatch problem. In contrast, the models
applying our framework achieve the best performances on the same
evaluation sets, showing up to approximately 16% performance
improvement over the baselines. This proves that our framework’s
ability to extract speaker information more clearly and strengthen
independence from environmental factors. The models utilising
only the GRL [7] also achieved performance improvements, but the
more remarkable results across all evaluation sets by our framework
confirm a higher capacity to exclude environmental information.
Generalisation. As shown in Table 1, the models employing
only the GRL [7] show the highest standard deviation values
across almost all evaluation sets except for one experiment with
ResNet-34 on Vox1-H. Additionally, Table 1b reveals a performance
degradation on the VoxCeleb1-based evaluation sets. This highlights
our claim that such direct adversarial learning-based DRL without
any constraint can lead to training instability and a failure in
generalisation. Conversely, our framework not only reduces the
standard deviation even though employing GRL but also shows
approximately 12% improvement in the performance of baseline
models, as illustrated in Table 1b. This proves that our framework’s
auto-encoder effectively mitigates information loss during the DRL
process, facilitating generalisation through DRL.

6. Conclusion
We introduce a novel adversarial learning-based DRL framework for
environment robust speaker recognition. Our framework leverages
an auto-encoder as a disentangler to separate a speaker representa-
tion and an environment representation from an originally entangled
speaker representation of a speaker network. The auto-encoder also
works to minimise unnecessary loss of vital speaker representation
through reconstruction training, and consequently, the proposed
framework reduces the training instability caused by adversarial
learning. The proposed framework shows significant performance
improvement on evaluation sets that reflect varied environments
and also on standard benchmarks.
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