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ABSTRACT

Automated Audio Captioning (AAC) aims to describe the se-
mantic content of input audio. Recent works have employed
large language models (LLMs) as a text decoder to leverage
their reasoning capabilities. However, prior approaches that
project audio features into the LLM embedding space without
considering cross-modal alignment fail to fully utilize these
capabilities. To address this, we propose LAMB, an LLM-
based audio captioning framework that bridges the modal-
ity gap between audio embeddings and the LLM text em-
bedding space. LAMB incorporates a Cross-Modal Aligner
that minimizes Cauchy–Schwarz (CS) divergence while max-
imizing mutual information, yielding tighter alignment be-
tween audio and text at both global and token levels. We
further design a Two-Stream Adapter that extracts semanti-
cally enriched audio embeddings, thereby delivering richer
information to the Cross-Modal Aligner. Finally, leveraging
the aligned audio embeddings, a proposed Token Guide di-
rectly computes scores within the LLM text embedding space
to steer the output logits of generated captions. Experimen-
tal results confirm that our framework strengthens the reason-
ing capabilities of the LLM decoder, achieving state-of-the-
art performance on AudioCaps. Code is available at https:
//github.com/Hyeongkeun/LAMB.

Index Terms— automated audio captioning, large lan-
guage model, modality gap, Cauchy-Schwarz divergence

1. INTRODUCTION

Automated Audio Captioning (AAC) is a multimodal task
that aims to generate corresponding descriptions for given au-
dio content [1]. Capturing acoustic semantic information and
aligning it with textual features are key challenges in AAC,
as these processes enable the model to generate semantically
consistent and contextually appropriate descriptions.

Prior works [2–11] typically follow a two-stage frame-
work, using an audio encoder [12–14] and a text decoder [15–
17]. More recently, with the emergence of large language
models (LLMs), studies [3–7, 18] have employed LLMs [19–
21] as a text decoder to leverage their contextual reasoning.

∗These authors contributed equally to this work.

However, because LLMs are trained on large-scale text
corpora, their reasoning is most effectively exploited when
the conditioning inputs (e.g. audio modality) are represented
in the LLM text embedding space [22]. Existing methods [3,
6, 7] map audio features into this space, typically via linear
projection or Q-Former [23], without an explicit objective that
bridges the audio–text modality gap. As a result, a modality
misalignment can remain between audio representations and
the LLM embedding space, limiting the ability of the decoder
that interprets audio semantics.

To overcome this limitation, we introduce LAMB, an
LLM-based Audio Captioning framework for Modality
Bridging. Our approach lies in a Cross-Modal Aligner that
leverages Cauchy-Schwarz (CS) divergence [24]. This sym-
metric metric, combined with mutual information, provides
a robust distance estimation that effectively captures both
global structures and pairwise semantic correspondences be-
tween different modalities [25]. To the best of our knowledge,
this is the first use of CS divergence to mitigate the modality
gap for LLM-driven audio captioning. Ensuring effective
cross-modal alignment, the audio features are processed with
Two-Stream Adapter, which extracts both semantically and
temporally rich context. With these high-quality audio fea-
tures, the Cross-Modal Aligner can more accurately align
them to the text embedding space. Finally, our novel Token
Guide directly steers the text generation process. It handles
scores between the aligned audio and token embeddings us-
ing only the LLM’s own token dictionary, avoiding reliance
on auxiliary modules that constrained previous works [7].

Experiments validate the effectiveness of each compo-
nent of the proposed method. Furthermore, our framework
achieves superior performance over state-of-the-art methods
on AudioCaps, and shows comparable results with some
improvements on Clotho.

2. METHOD

Fig. 1 shows the overall architecture of LAMB, and the sub-
sequent sections provide detailed explanations of each com-
ponent and the training objectives.
2.1. Two-Stream Adapter

The input audio xa is first encoded by the audio encoder
Ea into embeddings ha = Ea(xa) ∈ RNa×D, where Na is
the number of audio tokens and D the embedding dimension.

https://github.com/Hyeongkeun/LAMB
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Fig. 1. (a) Overview of the proposed LAMB framework with (b) Cross-Modal Aligner and (c) Two-Stream Adapter.

We then introduce the Two-Stream Adapter to capture seman-
tic and temporal context of ha through two parallel modules.
Semantic Module. Semantic features are extracted by Ns

learnable queries Qs ∈ RNs×D attending to ha through
multi-head attention (MHA), followed by residual connec-
tion and LayerNorm (LN):

MHA(Qs,ha) = σ
(

QsWQ·(haWK)⊤√
dH

)
haWV , (1)

ĥs = LN(MHA(Qs,ha) +Qs), (2)
where σ is softmax, WQ,WK ,WV ∈ RD×HdH are projec-

tion matrices, H the number of heads, and dH the head size.
Temporal Module. Temporal features are extracted using a
multi-scale 1D convolutional front-end, a two-layer bidirec-
tional GRU [26], and MHA with residual connection and Lay-
erNorm. The convolutional front-end captures local patterns
from ha, which are projected to dimension D with Layer-
Norm and GELU activation. The GRU encodes contextual
dependencies, and Nt learnable queries Qt ∈ RNt×D attend
to its outputs to form temporal representations:

ĥt = LN(MHA(Qt,GRU(Conv1D(ha))) +Qt), (3)

where Conv1D(·) and GRU(·) denote the convolutional
front-end and GRU encoder.
Fusion. The outputs of the two parallel modules ĥs and ĥt

are concatenated along the token axis, and then processed
with Ng global queries Qg via a cross-attention layer with
residual and LayerNorm. The resulting representations are
projected into the Dllm-dimensional LLM text embedding
space via Wp ∈ RD×Dllm , yielding za ∈ RNg×Dllm :

za =
(
LN(MHA(Qg, [ĥs; ĥt]) +Qg)

)
Wp. (4)

2.2. Cross-Modal Aligner
A Cross-Modal Aligner employs Cauchy–Schwarz (CS)

divergence with mutual information to align audio embed-
dings za with caption embeddings zt in a batch B, where
zt is the encoding of caption xt with the LLM tokenizer Et.

The representative vectors z̄a and z̄t are computed via mean
pooling to quantify the modality gap between audio and the
LLM text distributions. The CS divergence, DCS, provides
a symmetric and robust measure of the distance between the
distributions of audio pa and text pt as follows:

DCS(pa; pt) = − log

∫
pa(ω)pt(ω) dω√∫

p2a(ω) dω
∫
p2t (ω) dω

, (5)

with 0 ≤ DCS < ∞ and DCS = 0 if and only if pa = pt.
Global-level CS Divergence. Since Eq. 5 is intractable, we
approximate DCS via non-parametric KDE[28] using i.i.d.
samples {z̄(i)a }Bi=1 ∼ pa(z̄a) and {z̄(i)t }Bi=1 ∼ pt(z̄t), where
each batch B spans the entire dataset, to measure the global-
level distributional distance, as follows:

D̂CS(pa(z̄a); pt(z̄t)) = − log

∑B
i,j=1 κ

ij
at√(∑B

i,j=1 κ
ij
aa

)(∑B
i,j=1 κ

ij
tt

) , (6)

where κij
mn = κ(z̄

(i)
m , z̄

(j)
n ), κ is Gaussian kernel κσ(x, y) =

exp(−||x − y||22/2σ2) with kernel width σ. The global distri-
bution distance is reduced by the loss LCS-global = D̂CS.
Token-level CS Divergence. To achieve fine-grained align-
ment between audio and caption embeddings, we present a
token-level loss based on token-wise CS divergence. For each
pair of token-level embeddings {z(i)a , z

(i)
t }Bi=1, the CS diver-

gence is estimated as D̂CS(pa(z
(i)
a ); pt(z

(i)
t )) and the token-

level loss is defined as the average of per-sample divergences:

LCS-token =
1

B

B∑
i=1

D̂CS(pa(z
(i)
a ); pt(z

(i)
t )). (7)

Lastly, we adopt the InfoNCE loss [29] to maximize lower
bounds of mutual information between modalities, defined as:

LInfoNCE = 1
2

(
La→t + Lt→a

)
, (8)

Lm→n = − 1
B

∑B
i=1 log

exp
(
sim(z̄i

m,z̄i
n)/τ

)
∑B

j=1 exp
(
sim(z̄i

m,z̄j
n)/τ

) . (9)

Here, τ is the temperature and sim(·, ·) the cosine similarity.



Table 1. AAC results on AudioCaps and Clotho. Bold numbers denote the best scores and underlined numbers the second
best. Gray-shaded rows indicate results with additional pretraining datasets. ∗Reported from previous work [7]. Pre-training
datasets include AudioCaps (AC), Clotho (CL), augmented Clotho (CLP [7]), WavCaps (WC), MACS (MA), and AutoACD
(AA). Evaluation metrics are METEOR (MT), CIDEr (CD), SPICE (SC), SPIDEr (SD), SPIDEr-FL (SF), and FENSE (FS).

AudioCaps Clotho

Model PT Dataset MT CD SC SD SF FS MT CD SC SD SF FS

HTSAT-BART [27] AC+CL+WC 25.0 78.7 18.2 48.5 48.3∗ 64.2∗ 18.5 48.8 13.3 31.0 29.6∗ 50.1∗

EnCLAP-large [8] AC+CL 25.5 80.3 18.8 49.5 49.9∗ 65.5∗ 18.6 46.4 13.3 29.9 28.9∗ 50.7∗

AutoCap [9] AC+CL+WC 25.6 80.4 19.0 49.7 - - - - - - - -
LOAE [6] AC+CL+WC 26.7 81.6 19.3 50.5 50.4 66.4 19.7 51.3 14.7 33.0 33.0 53.8
CLAP-ART [10] - / AC 25.6 80.7 18.8 49.8 - 65.5 18.7 47.5 13.3 30.4 - 51.1
MQ-Cap [11] AC+CL+WC+AA - 84.5 19.4 51.9 - - - 49.6 14.3 31.9 - -
SLAM-AAC [7] AC+CLP +WC +MA 26.8 84.1 19.4 51.8 51.5 66.8 19.7 51.5 14.8 33.2 33.0 54.0
LAMB (Ours) AC+CL+WC 27.1 91.1 19.7 55.4 55.3 67.7 19.8 52.3 14.7 33.4 33.1 53.4

Table 2. Ablation of alignment methods on AudioCaps.
Align Method L2 ↓ Cos↑ MT↑ CD↑ SC↑ SD↑

Q-former 111.8 0.04 24.4 66.9 18.1 42.5
Linear Layer 62.6 -.01 25.3 77.2 18.1 47.7
CMA (ours) 10.9 0.58 27.1 91.1 19.7 55.4
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Fig. 2. UMAP Visualization of audio–text embedding align-
ment with/without Cross-Modal Aligner (CMA).

The overall cross-modal alignment loss is as follows:

Lcma = α1LCS-global + α2LCS-token + α3LInfoNCE. (10)

2.3. Text Decoding with Token Guide
We propose Token Guide to steer the output logits using

solely the LLM token dictionary without auxiliary module or
external corpora. At each decoding step l, the logits zl of
LLM decoder Dt are obtained from the concatenation of the
audio embedding za and the instruction prompt embedding
zp = Et(xp), where Et is the LLM tokenizer:

zl = Dt([za;Et(xp)],Matt), (11)

where Matt is the attention mask enforcing the autoregres-
sive property of the LLM. At each step l, the guided logit
ẑl,i is obtained by correcting the original logit zl,i with Guide
Scores, squared L2 distance between global mean z̄a and to-
ken embeddings {vi}Ki=1, scaled by a learnable coefficient β:

ẑl,i = zl,i − β · ||z̄a − vi||22, i = 1, . . . ,K. (12)

Given the audio embeddings za and prompt embeddings zp,
the autoregressive cross-entropy loss is defined as

Lce = − 1

L

L∑
l=1

log
[
p(yl|y<l, za, zp)

]
, (13)

where p(·) denotes the predicted probability distribution at
step l. Both the original logits (porig = Softmax(zl)) and the
guided logits (ptg = Softmax(ẑl)) are utilized to compute the
loss functions Ldec and Ltg, respectively.
2.4. Loss Functions

The final objective combines all components with weights:

Ltotal = λ1Lcma + λ2Ltg + λ3Ldec. (14)

3. EXPERIMENTS

3.1. Experimental Settings
3.1.1. Datasets

We pre-train the model on the combined dataset of Audio-
Caps [30], Clotho [31], and WavCaps [27], and fine-tune it
separately on AudioCaps and Clotho. AudioCaps provides
48,595 training and 944 test clips (10 s each) with audio-
based annotations, retrieved from available links. Clotho
v2.1 contains 3,839 development, 1,045 validation, and 1,045
evaluation clips (15–30 s), each with five captions. Wav-
Caps comprises 403,050 clips (a few seconds to over one
minute) collected from AudioSet [32], BBC Sound Effects,1

FreeSound,2 and SoundBible.3

3.1.2. Implementation Details and Metrics

We adopt the consistent ensemble distillation [33] model as
the audio encoder and LLaMA 2 (7B) [20] as the text de-
coder, fine-tuned with LoRA [34]. Query numbers are set to
Ns=8, Nt=8, and Ng=32. All experiments used AdamW with

1https://sound-effects.bbcrewind.co.uk
2https://freesound.org
3https://soundbible.com



Table 3. Ablation of Guide Scores on AudioCaps.
Guide Scores MT CD SC SD SF FS

Cosine sim. 26.6 81.6 19.0 50.3 50.2 66.8
L1 dist. 25.9 88.6 17.5 53.1 52.4 65.5
L2 dist. (ours) 27.1 91.1 19.7 55.4 55.3 67.7

Table 4. Ablation of LAMB components of on AudioCaps.
Element Ablation MT CD SC SD SF FS

LAMB (Ours) 27.1 91.1 19.7 55.4 55.3 67.7
w/o TSA 26.7 87.6 18.9 53.3 53.2 65.9
w/o LCS (LCS-global+CS-token) 24.4 84.8 16.6 50.7 49.4 63.0
w/o CMA (Lcma) 25.8 78.6 18.9 48.7 48.6 65.8
w/o TG 26.8 82.2 19.2 50.7 50.6 66.9

weight decay 1e-6, trained for 30 epochs (2 warmup epochs)
under a cosine annealing schedule. Pre-training employed
a learning rate of 5e-5 with batch size 32, and fine-tuning
used 3e-6 with batch size 8. For evaluation, we adopt com-
mon AAC metrics, including METEOR [35], CIDEr [36],
SPICE [37], SPIDEr [38], SPIDEr-FL [39], and FENSE [39].

3.2. Main Results
Tab. 1 summarizes the performance of LAMB on the AAC

benchmarks. LAMB surpasses prior work on all evaluation
metrics, establishing clear state-of-the-art results on Audio-
Caps. On AudioCaps, it achieves notable gains, particularly
on CIDEr, SPIDEr, and SPIDEr-FL, while also improving
METEOR and SPICE, reflecting stronger semantic and struc-
tural fidelity. On Clotho, which is more challenging due to di-
verse captions, LAMB shows competitive performance with
improvements on several metrics, demonstrating robustness
to annotation variability. Notably, while several prior works
rely on additional pre-training data, our model attains compa-
rable or better results across the datasets.

These results show that bridging the modality gap en-
hances the LLM’s reasoning and produces captions that are
more faithful, coherent, and aligned with human preference,
reflected in improvements in FENSE and SPIDEr-FL.

3.3. Ablation Studies

Modality Gap Alignment Strategies. We first assess the ef-
fectiveness of the Cross-Modal Aligner (CMA). As shown in
Tab. 2, CMA yields the lowest L2 distance and highest cosine
similarity, surpassing linear and Q-Former baselines. More-
over, Fig. 2 visualizes with UMAP that CMA clearly reduces
the modality gap compared to the case without CMA.
Token Guide Metrics. Tab. 3 presents the ablation results on
identifying effective methods for computing Guide Scores in
Token Guide (TG). Squared L2 distance proves most effec-
tive, stably steering decoder logits and achieving the highest
scores, while L1 distance slightly degrades performance and
cosine similarity yields results inferior to the baseline without
guidance. Even without auxiliary modules or external knowl-

Table 5. Qualitative results without and with Token Guide.
Underlined text indicates audio cues captured more explicitly.

w/o Token Guide w Token Guide

“Basketballs are dribbled and
shoes squeak as a man speaks”

“Sneakers squeaking and basket-
balls bouncing on a hard surface
as a group of people talk in the
background”

“A loud crash followed by a man
speaking and a woman scream-
ing”

“Glass shattering followed by a
man speaking then a woman
speaking before a rooster crows
and birds chirping”

edge, Guide Scores derived from the LLM text embedding
space effectively guide the decoder.
Effect of Components. Tab. 4 highlights the role of each
module by ablating components of LAMB. Two-Stream
Adapter (TSA) provides semantic and temporal features of
audio to CMA, and its removal reduces both semantic cover-
age and structural fidelity. Within CMA, two loss terms are
used: CS divergence and InfoNCE. Removing LCS causes a
larger performance drop (rows 1 & 3) than removing LInfoNCE
(rows 3 & 4), and excluding both further lowers all met-
rics. TG is also important, as its absence lowers performance
across all metrics. Overall, these modules offer complemen-
tary benefits, with the full model achieving the best results.
3.4. Qualitative Results

In Tab. 5, we present captions generated by LAMB trained
with and without TG. Since the Guide Scores are computed
as the squared L2 distance between aligned audio embed-
dings and LLM token embeddings, semantically related to-
kens receive higher weights, enabling more accurate and pre-
cise guidance. In the first example, TG allows the model to
capture not only the sound of a basketball bouncing but also
people talking, generating details such as “hard surface” and
“a group of people talk in the background”. In the second
example, TG links “loud crash” to “glass shattering” and
additionally identifies background sounds such as “a rooster
crows” and “birds chirping”. These results indicate that TG
can directly guide in the LLM text embedding space, enabling
precise and accurate caption generation.

4. CONCLUSION

In this work, we introduced LAMB, an LLM-based audio
captioning framework that, for the first time, applies Cauchy-
Schwarz divergence to bridge the audio-text modality gap in
audio captioning. LAMB integrates a Cross-Modal Aligner
for fine-grained alignment and a Two-Stream Adapter to en-
rich audio representations, while the Token Guide steers de-
coder logits using Guide Scores in the LLM text embedding
space. Experimental results show that LAMB outperforms
prior work on AudioCaps and achieves competitive perfor-
mance on Clotho, indicating that bridging the modality gap
enables effective use of LLM reasoning in audio captioning.
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