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ABSTRACT

The objective of this work is to extract the target speaker’s voice
from a mixture of voices using visual cues. Existing works on
audio-visual speech separation have demonstrated their perfor-
mance with promising intelligibility, but maintaining naturalness
remains challenging. To address this issue, we propose AVDif-
fuSS, an audio-visual speech separation model based on a dif-
fusion mechanism known for its capability to generate natural
samples. We also propose a cross-attention-based feature fu-
sion mechanism for an effective fusion of the two modalities
for diffusion. This mechanism is specifically tailored for the
speech domain to integrate the phonetic information from audio-
visual correspondence in speech generation. In this way, the
fusion process maintains the high temporal resolution of the fea-
tures, without excessive computational requirements. We demon-
strate that the proposed framework achieves state-of-the-art results
on two benchmarks, including VoxCeleb2 and LRS3, producing
speech with notably better naturalness. Project page with demo:
https://mm.kaist.ac.kr/projects/avdiffuss/

Index Terms— diffusion, stochastic differential equation,
audio-visual, speech separation

1. INTRODUCTION

While significant advancements in audio-only speech recognition
and separation techniques have been witnessed recently, challenges
remain in understanding a speech from an individual amidst over-
lapping sounds. In real-world situations, conversations are often in-
tertwined with other voices or disturbed by a cacophony of noises.
Elimination of such disturbances is crucial in settings like meetings,
where one has to focus on the speech of a single individual. Humans
excel at guiding their attention to a sound source of interest in such
environments, naturally de-emphasizing other sounds. The impor-
tance of visual modality in humans’ understanding of spoken com-
munications is emphasized in instances where auditory cues contra-
dict visual cues from the speaker’s face, leading to frequent misin-
terpretation of speech sounds [1].

Audio-Visual Speech Separation (AVSS) aims to emulate this
human capacity, distinguishing each voice from a collective sound-
scape using visual information. Beyond enhancing the auditory
intelligibility for listeners, this technique can also serve as a pre-
processing step for various speech-related tasks, including cascaded
speech recognition [2, 3] and speaker diarization [4]. Consequently,
there have been significant advances in audio-visual speech sep-
aration, driven by the accessibility of multi-modal datasets and
high-performance computing. Early works [2, 5] have proposed to
combine visual and audio features to distinguish the target speaker’s
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Fig. 1. A pipeline for audio-visual speech separation based on a
diffusion model. Mixed speech and target speaker’s face crop im-
ages are used as inputs for the model, which then extracts the target
speaker’s speech through a reverse diffusion process.

speech in complex and noisy environments. A noteworthy finding
in their research is that leveraging the visual modality effectively
addresses the label permutation problem, which arises from the
challenge of assigning a proper ground truth to the predicted output
during training. Recently, VisualVoice [6] utilizes both lip motions
and facial attributes (e.g. gender, age, and nationality) as conditions
to specify the target speaker. Thus, it is reported that leveraging lip
movements is effective for aligning auditory and visual information
to extract phonetic information, and incorporating facial attributes
aids in distinguishing target speakers using their identity cues.

With the advancements in deep learning, there have been suc-
cessful applications of generative models in the AVSS field. Gener-
ative AVSS models [7, 8] produce realistic samples by learning the
mapping from latent space to clean speech distribution. Although
these approaches have demonstrated successful performance, they
face difficulties in generating diverse samples and exact data estima-
tion, frequently producing speech with undesirable artifacts. This
indicates the need for generating samples that sound more natural
to humans. In response to this, we take advantage of the generation
capabilities of the diffusion-based generative model. The diffusion
model proposed and developed in earlier works [9, 10, 11] is known
for its potential in generating diverse and natural samples across var-
ious domains [12, 13, 14, 15], including the audio-only speech sep-
aration [16, 17].

In this work, we propose a diffusion-based AVSS model called
AVDiffuSS that reconstructs natural and intelligible utterances.
We fuse audio and visual modalities in the generation process of
speech to incorporate extra information from the video. We miti-
gate the requirement of pre-training of the encoder and decoder in
the widely-used feature fusion strategy [12]. Our method supports a
frequency-domain compression of audio features without any extra
processing step, enabling end-to-end training.

Our contributions consist of the following: (1) To the best of our
knowledge, we are the first to introduce an audio-visual speech sep-
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Fig. 2. Model architecture of AVDiffuSS. Face-cropped images of the target speaker are fed to the visual encoder to obtain the visual
embedding v. A mixture of two speech signals is transformed into a spectrogram y by STFT, and it goes into two stages: 1) a predictive
stage, and 2) a generative stage. Each stage consists of U-net architecture with cross-attention layers. For the input of the generative stage, the
output of first stage Dθ(y,v) is concatenated with the xT, which is sampled from N (Dθ(y,v), σ

2I) . In the next stage, reverse diffusion is
repeated for N steps at inference. Note that ∥ denotes concatenation.

aration based on a diffusion model, capable of reconstructing both
natural and intelligible speech. (2) With the help of the proposed
compressing strategy, we successfully mitigate the excessive com-
putational overheads and make our model suitable in the speech
domain. (3) With various experiments, we demonstrate that the
proposed method attains state-of-the-art results on two widely used
benchmark datasets.

2. METHOD

As illustrated in Fig. 2, our framework comprises two main stages:
the predictive stage and the generative stage. In the predictive stage,
the model initially estimates the speech of the target speaker using
visual semantics v extracted by the visual encoder. The output of
the predictive stage, denoted as Dθ(y,v), is then fed into the gen-
erative stage, which employs a diffusion-based model. In this stage,
the initial prediction is further enhanced through an iterative denois-
ing process. Note that both stages improve audio-visual alignments
by utilizing a task-specific cross-attention module, resulting in the
generation of more natural samples.

2.1. Visual Encoder

The visual modality plays two pivotal roles in audio-visual speech
separation: (1) synchronizing speech with lip movements to cap-
ture phonetic details, and (2) identifying the target speaker based
on facial attributes, such as gender, age, and nationality. Taking
inspiration from a study in active speaker detection [18], a visual
encoder capable of both preserving temporal dynamics and incor-
porating visual cues can be leveraged to achieve the aforementioned
objectives. We adopt the encoder architecture from [18], which com-
prises a series of ResNet18 layers and a temporal convolutional net-
work from [19]. On top of those modules, a 1D convolution layer is
attached to reduce the channel dimension. The encoder, as a result,
outputs frame-level spatio-temporal features.

2.2. Encoder-Decoder Free Conditioning by Cross-Attention

To effectively separate the desired speech by exploiting the visual
modality, it is essential to maintain the temporal characteristics of
both auditory and visual features throughout the fusion process.
Based on this, we focus on the cross-attention mechanism, which
enables the model to learn the correspondence between sequential
information from the two different modalities. Since cross-attention
calculates correlations between different modalities by multiplica-
tion, it requires heavy computational costs. In response to this, we

propose a feature fusion method using cross-attention, eliminat-
ing the need for a complex feature compression process involving
encoder-decoder architecture.

The proposed feature fusion method is conducted in both pre-
dictive and generative stages. In each stage, we aim to acquire the
correspondence between visual and audio embeddings. As we adopt
the U-net architecture as the backbone of both stages, audio em-
bedding can be represented as ea,i ∈ RCi×Ti×Fi . Here, Ci, Ti,
and Fi denote the number of channels, frame lengths, and frequency
lengths, respectively, in the i-th U-net layer. By applying frequency-
axis pooling to the audio features, we obtain the pooled audio feature
denoted as ēa,i ∈ RCi×Ti , which is used as the query, while the vi-
sual feature is employed as the key and value. The output of the
cross-attention module is repeated Fi times to recover the original
shape of the input before averaging across frequencies. Through this
process, our model denoises undesired speech while enhancing the
voice of the target speaker.

2.3. Audio-Visual Speech Separation with Diffusion

Predictive stage. In the first stage, a predictive model Dθ predicts
the separated speech in one pass. The aforementioned visual en-
coder and the cross-attention mechanisms are utilized in this stage
to use both modalities in the separation process. The initial predic-
tion Dθ(y,v) serves as a conditioning factor for the second stage.
Generative stage. The diffusion process in the generative stage con-
sists of two procedures, forward process and reverse process. During
the forward process {xτ}Tτ=0 indexed by a continuous time vari-
able τ , a data x undergoes a gradual perturbation by adding Gaus-
sian noise from a clean data x0 to a noisy data xT . A diffusion
model [10, 20] is designed to reverse this process, ultimately gen-
erating a clean data point x0 ∼ p0 from a noisy prior xT ∼ pT .
In the context of score-based generative models, a score model, de-
noted as sϕ, is trained to estimate ∇x log p(x), which corresponds
to the logarithm of the data density function’s gradient with respect
to the data x. The forward process is mathematically modeled using
a Stochastic Differential Equation (SDE) [20], defined as follows:

dxτ = f(xτ , τ)dτ + g(τ)dw. (1)

Here, w represents the standard Wiener process, f acts as
the drift coefficient of xτ , and g serves as the diffusion coeffi-
cient controlling the magnitude of additional Gaussian noise at
each step. Our model utilizes SDE from the class of Ornstein-
Uhlenbeck SDEs [21], with the drift coefficient f defined as
f(xτ , τ) := γ(Dθ(y,v) − xτ ), where γ indicates a stiffness
parameter. This SDE has been applied in previous works for speech
enhancement [15, 13]. As τ progresses from 0 to T in the forward



Method A-V Diff PESQ ESTOI SI-SDR

DiffSep [16] ✓ 2.2070 0.6080 4.4070
VisualVoice [6] ✓ 1.9586 0.7696 9.5757

AVDiffuSS (Ours) ✓ ✓ 2.5906 0.8152 12.2701

Table 1. Speech separation results on the VoxCeleb2 dataset. For all
metrics, higher is better. A-V refers to the audio-visual model, and
Diff refers to the diffusion-based model.

process in Eq. (1), xτ approaches Dθ(y,v) with accumulated Gaus-
sian noise. The reverse-diffusion process in our model is guided by
the initial prediction Dθ(y,v) which is trained to be similar to
ground truth x. In the reverse process, the model is trained to solve
the corresponding reverse-time SDE, which is expressed as:

dxτ =
[
f(xτ , τ)− g(τ)2∇xτ log pτ (xτ )

]
dτ + g(τ)dw, (2)

where w denotes a standard Wiener process representing the re-
verse time flow from T to 0, with dτ signifying an infinitesimal
negative time step. Through the reverse process, a natural and intel-
ligible speech x̂ is generated from a noisy prior xT .
Training objective. For the joint training of predictive model Dθ

and generative stage Gϕ, we adopt a multi-task learning strategy as
described in [13]. The following equations indicated in Eq. (3)-(5)
outline the overall training process. The predictor Dθ is trained to
directly separate the desired speech from the noisy speech y with
the aid of v. The loss function for Dθ is denoted in Lpred, which
is an L2 loss computed between the initial prediction Dθ(y,v) and
the ground-truth x . The loss function for the second stage Ldiff is
determined for the given timestep τ uniformly sampled from [0, T ].
The score model sϕ is trained with a denoising score matching ob-
jective [22] introduced in [20], regarding the noise scale στ for time
step τ . With weight values λ1 and λ2 for these two objectives, re-
spectively, the total loss Ltotal for balanced training is as follows:

Lpred = E
[
∥x−Dθ(y,v)∥22

]
, (3)

Ldiff = E
[
∥sϕ(xτ ,y,v, τ) +

xτ − x

στ
∥22
]
, (4)

Ltotal = λ1 ∗ Lpred + λ2 ∗ Ldiff . (5)

It is important to note that Gϕ encompasses each step of the
reverse-diffusion stage, involving both the estimation of a score by
sϕ(xτ ,y,v, τ) and the sampling procedure to obtain xτ−1.
Inference procedure. In the predictive stage, the model Dθ(·) gen-
erates an initial prediction of the target speech using y and v. For
the second stage, we can set the number of reverse-diffusion steps
N , which controls the step size between each diffusion timesteps τ ,
thereby affecting the quality of the generated output.

The output of the first stage Dθ(y,v) is employed to sample xT

from the distribution N (µT , σ
2
T I) for the second stage, where µT is

set as Dθ(y,v). The input for the score model sϕ is constructed by
a concatenation of Dθ(y,v) and xT . By solving the Eq. (2), xT−1

is obtained. xT−1 is then fed into Gϕ alongside Dθ(y,v), and this
process is repeated for N steps. Through this reverse-diffusion pro-
cess, the target audio prediction x̂ can be regenerated from Dθ(y,v)
with improved naturalness and clarity.

3. EXPERIMENTS

We evaluate our model quantitatively using three established speech
evaluation metrics, which are Perceptual Evaluation of Speech

Method A-V Diff PESQ ESTOI SI-SDR

DiffSep [16] ✓ 2.0569 0.6810 5.3140
VisualVoice [6] ✓ 1.7719 0.7412 7.2274

AVDiffuSS (Ours) ✓ ✓ 2.8106 0.8856 14.1707

Table 2. Speech separation results on the LRS3 dataset. Results are
obtained by the models trained on the VoxCeleb2 dataset.

Quality (PESQ) [23], Scale-Invariant Signal-to-Distortion Ratio
(SI-SDR) [24], Extended Short-Time Objective Intelligibility (ES-
TOI) [25], and qualitatively through Mean Opinion Score (MOS).

3.1. Experimental Setup

Datasets. VoxCeleb2 [26] dataset is a widely-used dataset for audio-
visual tasks comprising more than 1 million utterances extracted
from YouTube videos. This dataset consists of 5,994 identities in the
training set, and 118 identities in the test set. Our model is trained on
the VoxCeleb2 train set, and 10 utterances in the test dataset are ran-
domly chosen for validation. LRS3 [27] dataset is another popular
dataset for audio-visual speech recognition and speech separation.
The dataset is made up of 4,004 videos for training and validation,
and 412 videos for test sets, which are from TED and TEDx videos.

Implementation details. We utilize NCSN++M [13] for the U-net
and modify the cross-attention mechanism on U-net from [12]. We
follow the details in [13] for the diffusion process and set the number
of reverse-diffusion steps N to 30. The input for the visual encoder
is a sequence of face-cropped grayscale images resized to 112×112.
Our model is updated with Adam optimizer [28] with an exponential
moving average of network parameters with a decay of 0.999 [29],
and the learning rate is initialized to 10−4. The weight values λ1 and
λ2 for Lpred and Ldiff are both set to 0.5. We use 4 RTX A5000
GPUs for training with an effective batch size of 16. We train our
network for 30 epochs, which takes approximately 24 days.

Comparison methods. We compare our method with two publicly-
available state-of-the-art speech separation models. DiffSep1 [16]
is an audio-only diffusion-based speech separation model extended
from SGMSE+ [15], and VisualVoice2 [6] is an audio-visual speech
separation model. We train DiffSep on the VoxCeleb2 dataset from
scratch for 20 epochs for pair comparisons, as this results in approx-
imately the same number of iterations as reported in [16]. We also
utilize an official pre-trained VisualVoice model and generate a test
set, following [6]. Note that every model is trained on the VoxCeleb2
train set and tested on the first 2 seconds of the samples in the test
sets of VoxCeleb2 and LRS3 datasets.

3.2. Experimental Results

Quantitative results. To validate the effectiveness of our meth-
ods, we show the experimental results on VoxCeleb2 and LRS3 test
sets in Table 1 and Table 2, respectively. The importance of the
visual modality for accurate separation of the target speech is high-
lighted in the ESTOI and SI-SDR results of DiffSep. Moreover, our
model shows a higher PESQ score than VisualVoice, which indi-
cates that our model generates natural-sounding speech due to the
reverse-diffusion stage. To further simulate one-shot speech separa-
tion scenarios, we evaluate every model trained with VoxCeleb2 on

1https://github.com/fakufaku/diffusion-separation
2https://github.com/facebookresearch/VisualVoice



Method A-V Diff MOS

DiffSep [16] ✓ 2.24 ± 0.11
VisualVoice [6] ✓ 2.98 ± 0.10

AVDiffuSS (Ours) ✓ ✓ 4.44 ± 0.07

Table 3. MOS comparison with 95% confidence interval. A group
of 17 participants rated 20 lists of audio randomly selected from the
results of each model on the VoxCeleb2 dataset.

Method PESQ ESTOI SI-SDR

DiffSep [16] 1.8926 0.5116 0.4439
VisualVoice [6] 1.7675 0.7334 7.4973

AVDiffuSS (Ours) 2.2387 0.7672 9.2628

Table 4. Speech separation results tested on the bottom 30% samples
sorted by SI-SDR results of our model on VoxCeleb2 dataset.

the LRS3 test set. The results in Table 2 show the robustness of our
model on a cross-dataset evaluation.

Qualitative results. We conduct a subjective evaluation using MOS
to measure how much the outputs sound natural to the human ear.
A group of 17 participants are asked to assess 20 pairs of separated
outputs on a scale of 1 to 5. Every sample is normalized to eliminate
the amplitude bias in outputs of each model and the orders of the
models are randomly assigned for every pair. Criteria for the evalua-
tion are: (1) audio quality relative to the corresponding ground-truth,
and (2) degree of separation. Evaluating the degree of separation is
impossible without knowing the ground truth samples when separat-
ing the voices of two people with similar tones, because the outcome
may sound natural even when the other speaker’s speech is included.
Therefore, the ground truth samples are provided to the participants
as standards for assessing separation capability. As shown in Table 3,
the MOS of our model is significantly higher compared to previous
works. These results demonstrate the ability of our approach to gen-
erate samples that sound clear and natural to human hearing, not to
mention their intelligibility.

3.3. Discussions

Experimental results in difficult cases. In real-world scenarios
such as a conversation between two speakers with similar timbre, it
is difficult to accurately distinguish the speech of each speaker. Thus
we show the results from the hardest samples to prove the robustness
of our diffusion-based audio-visual approach. Sorted by the SI-SDR
result of our model, we choose the bottom 30% samples to demon-
strate the performance of each model in harsh conditions, which is
potentially disadvantageous to our method. By taking advantage of
both diffusion-based approaches and audio-visual ones, our model
shows reliable performance even under unfavorable conditions as
shown in Table 4. The ESTOI and SI-SDR results of our model
and VisualVoice demonstrate the ability of audio-visual models to
isolate the whole intelligible speech in harsh cases due to utilizing
synchronization cues and facial characteristics. In contrast, DiffSep
cannot identify the target speaker accurately due to the lack of visual
information, resulting in especially lower scores on SI-SDR.

Spectrograms of the separated outputs from each model are
shown in Fig. 3, including ground truth for comparison. A pair of
speech signals are randomly selected from the lowest 30% results,
and the mixture of speech is fed to each model to evaluate the three
models. Boxes and circles with identical colors in each row repre-
sent regions that should be the same as the spectrogram of the clean

Resolutions PESQ ESTOI SI-SDR

32 2.2322 0.7177 7.8316
32, 64 2.3687 0.7708 10.1944
32, 64, 128 (Ours) 2.4984 0.7959 11.2712

Table 5. Ablation results on the feature resolutions to which the
cross-attention modules are applied. Each model is evaluated on the
VoxCeleb2 dataset after 15 epochs of training.
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Fig. 3. Spectrogram comparison of the outputs of DiffSep [16], Vi-
sualVoice [6] and our model on the lowest 30% random sample.

sample. Arrows colored in green and blue denote that the non-target
speaker’s speech is included in the output of the audio-only diffusion
model, but not in our results. In VisualVoice, the details of the orig-
inal speech are ignored, and the speech is over-denoised as shown
in the spectrograms. This visualization demonstrates the ability of
our model to generate realistic details, not to mention the accurate
capturing of the spoken contents.
Feature resolution ablations for cross-attention. The U-net lay-
ers’ feature resolution in our model starts at 256 and is halved four
times during the downsampling path, reaching a minimum of 32,
and then upsampled to its original size. Among the eight layers,
cross-attention modules are applied on up to six layers with the three
smallest resolutions. Ablation results in Table 5 show the impact of
different feature resolution settings where cross-attention modules
are applied. Adding more cross-attention layers leads to a modest
performance improvement, indicating the benefits of incorporating
audio-visual fusion for speech separation. Yet, we avoid adding
cross-attention to every U-net layer due to memory constraints.

4. CONCLUSION

In this work, we present AVDiffuSS, an audio-visual speech separa-
tion framework based on the diffusion model. Our approach exploits
visual cues to extract the target speaker’s speech accurately, and the
diffusion model to produce a highly natural-sounding output. We
devise a task-specific feature fusion mechanism for integrating a tar-
get speaker’s visual information. The proposed model demonstrates
state-of-the-art performance for audio-visual speech separation in
terms of both naturalness and intelligibility.
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