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ABSTRACT

The goal of this paper is to provide a new perspective on
speech modeling by incorporating perceptual invariances
such as amplitude scaling and temporal shifts. Conventional
generative formulations often treat each dataset sample as a
fixed representative of the target distribution. From a gener-
ative standpoint, however, such samples are only one among
many perceptually equivalent variants within the true speech
distribution. To address this, we propose Linear Projection
Conditional Flow Matching (LP-CFM), which models targets
as projection-aligned elongated Gaussians along perceptually
equivalent variants. We further introduce Vector Calibrated
Sampling (VCS) to keep the sampling process aligned with
the line-projection path. In neural vocoding experiments
across model sizes, data scales, and sampling steps, the pro-
posed approach consistently improves over the conventional
optimal transport CFM, with particularly strong gains in low-
resource and few-step scenarios. These results highlight the
potential of LP-CFM and VCS to provide a more robust and
perceptually grounded generative modeling of speech.

Index Terms— speech modeling, flow matching, low-
resource modeling, perceptual invariance, neural vocoding

1. INTRODUCTION

Recent advances in speech generation have identified condi-
tional flow matching (CFM) [1] as a powerful alternative to
diffusion-based models. CFM learns a time-dependent vector
field that gradually transports samples from a simple source
distribution to the complex target data distribution, achieving
strong performance in various speech modeling tasks such as
speech synthesis, enhancement, and separation [2–7].

From the generative perspective, human auditory percep-
tion is generally robust to global amplitude scaling and small
temporal shifts. In practice, two waveforms that differ only
in loudness or slight temporal alignment are often perceived
as perceptually identical [8–10]. This property has already
been exploited in several speech-related tasks. For instance,
the scale-invariant signal-to-distortion ratio (SI-SDR) [8] is
widely adopted as an objective in speech separation for its
robustness to amplitude variations [11–14]. Similarly, phase
shift-invariant training (PSIT) [10] has been shown to en-

hance both the performance and training stability of speech
enhancement models by relaxing strict temporal alignment.
In contrast, conventional generative formulations, including
CFM, are not inherently designed with such flexibility. They
typically enforce learning a single instance from the dataset
and penalize any deviation, even when the alternative outputs
are perceptually equivalent. This rigid objective could lead to
inefficient use of data and model capacity.

Motivated by these observations, we propose Linear Pro-
jection Conditional Flow Matching (LP-CFM), a new formu-
lation of CFM that explicitly incorporates these perceptual
invariances. Rather than matching to an isotropic Gaussian
centered on a single data point, LP-CFM defines the target
as an elongated Gaussian distribution along a line that repre-
sents a set of perceptually equivalent targets (e.g., variants
differing only in global amplitude or temporal alignment),
as illustrated in Fig. 1. This design encourages the model
to learn a flow that directs samples toward the closest valid
point within the equivalence set, instead of forcing conver-
gence to one arbitrary instance. Furthermore, we introduce
Vector Calibrated Sampling (VCS), a simple yet effective cor-
rection strategy that ensures sampling remains consistent with
the projection-based geometry. Together, LP-CFM and VCS
enable the model to capture speech distributions in a more
efficient and perceptually meaningful way.

To validate the effectiveness of our proposed LP-CFM,
we conduct various experiments within a controlled neural
vocoding setting. Through a comparative analysis against the
optimal transport CFM (OT-CFM), we confirm that our ap-
proach achieves consistently better outcomes under diverse
conditions. This performance gain is especially pronounced
in challenging scenarios, such as limited model capacity or a
low number of sampling steps. These findings position LP-
CFM as a robust and generalizable alternative for speech gen-
eration, and more broadly, as a step toward generative models
that align more closely with human perceptual structures.

2. BACKGROUND

Flow matching [1] formulates generative modeling as learn-
ing a continuous-time flow that maps a simple prior distribu-
tion p0 into the data distribution p1. While the ideal marginal
vector field governing the transport of the entire distribution
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Fig. 1: Conceptual illustration of OT-CFM and LP-CFM: (a) OT-
CFM models a spherical (isotropic) Gaussian distribution around tar-
get sample x1, whereas (b) LP-CFM places mass along the shortest
projection path toward a line formed by equivalent variants of the
target sample, resulting in an elongated Gaussian distribution.

is intractable, conditional flow matching (CFM) provides a
tractable, simulation-free objective. CFM works by defining
simpler conditional probability paths pt(x|x1) for each data
point x1 and training vector vθ to match the corresponding
conditional vector fields ut(x|x1). A powerful and widely-
used implementation is optimal transport CFM (OT-CFM)
[1], which constructs a straight-line probability path between
a prior sample x0 ∼ N (0, I) and a data sample x1. The inter-
mediate path xt is defined as an interpolation that transforms
the prior into a narrow Gaussian N (x1, σ

2
minI) centered at the

data point:

xt = (1− (1− σmin)t)x0 + tx1.

For a point on this path, the conditional vector field ut(xt|x1)
is a time-invariant vector equivalent to the path velocity ẋt:

ut(xt|x1) = ẋt = x1 − (1− σmin)x0.

The training objective is therefore formulated as a regression
problem with the following loss function:

LCFM(θ) = Et,x0,x1

[∥∥vθ(xt, t)− ut(x|x1)
∥∥2] . (1)

3. METHODOLOGY

3.1. Linear Projection CFM (LP-CFM)

In practical generation tasks, a given target x1 may have mul-
tiple equivalent variants that are perceived as indistinguish-
able in quality. We assume such variants lie on a line

L(n;x1) = a(x1)n+ b(x1), n ∈ R,

where a(x1) ∈ Rd is a direction vector and b(x1) ∈ Rd is
an offset. Any point on L(n;x1) is then considered a valid
variant of x1.

3.1.1. Target distribution construction

Under this assumption, instead of modeling the target as
an isotropic Gaussian centered at x1, we define an elon-
gated Gaussian distribution that concentrates around the line

L(n;x1). Let p0 = N (µ0,Σ0) be the source distribution. We
construct target distribution as

p′1(x | x1) = N
(
b+ P (µ0 − b), MΣ0M

⊤),
where M = λI + (1− λ)P, P =

aa⊤

a⊤a
, λ ∈ (0, 1].

Here, P is the projection matrix onto the line direction a,
and M shrinks orthogonal components by a factor λ. Intu-
itively, this operation translates p0 toward the closest point on
L(n;x1) and compresses variance in the orthogonal subspace,
yielding a thin, elongated Gaussian aligned with the line. We
set p0 as N (0, I) which in turn simplifies to

p′1(x | x1) = N (b− Pb, MM⊤).

3.1.2. Conditional path and velocity

The conditional probability path is defined as the Wasserstein-
2 displacement interpolation between p0 and p′1. Since Gaus-
sians are closed under W2 displacement interpolation [15],
the intermediate distribution p′t is Gaussian as well. At the
sample level, the interpolation can be written as

xt = (1− t)x0 + t (b− Pb+Mx0), x0 ∼ p0,

with target velocity

ut(x|x1) = ẋt = (b− Pb+Mx0)− x0.

The training objective follows the CFM form as Equation (1).
This formulation naturally includes OT-CFM as a special

case: when λ = σmin, b = x1, and the line is undefined
(a = 0 ⇒ P = 0), the formulation becomes identical to
the isotropic Gaussian target of OT-CFM. Our method can
therefore be viewed as a more general formulation that adapts
the covariance structure to reflect equivalence classes of data
along L(n;x1).

3.2. Application on Speech Modeling

Theoretically, LP-CFM can be applied to any kind of gener-
ation task if its variants can be expressed as a line equation
L(n) = an + b. To provide a concrete instantiation of our
general theory, this paper focuses on the task of speech mod-
eling. We formulate the proposed equations for this specific
domain by leveraging the core properties of the short-time
Fourier transform (STFT).

3.2.1. Scaling property

When a signal is scaled in amplitude by a factor s, its mag-
nitude spectrogram becomes Xmag,y = |s|Xmag. Taking the
logarithm of this equation yields an additive relationship:

logXmag,y = logXmag + log |s|.

By setting the variant parameter n = log |s| ∈ R, this forms
the line equation L(n) = logXmag +n, which corresponds to
the line with a slope of a = 1 and an offset of b = logXmag.



3.2.2. Shifting property

When a signal is shifted in time of τ , the phase spectrogram
Xpha is modified as follows:

Xpha,y[k] = Xpha[k]−
2πk

N
τ,

where k is the frequency-bin index and N is the FFT size.
This expression is inherently a line equation. By defining
n = τ and a constant vector κ[k] = 2πk/N , the equation
takes the form L(n) = Xpha − nκ. This corresponds to a line
with a slope of a = −κ and an offset of b = Xpha. Through
these constructions, both log-magnitude and phase spectro-
grams admit linear variant sets. This derivation can also be
applied to broader domains, such as log-mel spectrograms,
which share the same scaling property.

3.3. Vector Calibrated Sampling (VCS)

In LP-CFM, the target velocity ut is by definition orthogo-
nal to its corresponding target line. However, the predicted
vector v may contain small, erroneous components parallel
to this line due to prediction errors. To address this, we pro-
pose Vector Calibrated Sampling (VCS), a simple correction
applied during inference to enforce this geometric constraint.
VCS removes the erroneous component of the predicted vec-
tor v that is parallel to the target line, while preserving the
vector’s original magnitude:

v′ =
∥v∥

∥(I − P )v∥
(I − P )v.

This operation is feasible in our speech application because
the line slopes are known constants (a = 1 for log-magnitude
and a = −κ for phase). The purpose of VCS is not to sig-
nificantly boost performance, but to act as a safeguard that
ensures the sampling process remains consistent with the ge-
ometric properties of the LP-CFM framework.

4. EXPERIMENTS

4.1. Experimental Setup

We evaluate our method on a neural vocoding setup, convert-
ing mel-spectrograms into waveforms. This task serves as a
controlled testbed for modeling both magnitude and phase,
allowing for a relative comparison against OT-CFM across
varying conditions to isolate the contributions of LP-CFM.
Model architecture. To control for architectural factors, we
simplify the model design. The mel encoder consists of 1D
convolution with kernel size of 7 followed by a single Con-
vNeXt V2 [16] block, which maps mel bins to the STFT fre-
quency dimension. The encoded mel features are channel-
wise concatenated with the input of a flow matching decoder
to predict vectors for both magnitude and phase spectrograms.
The decoder is a minimally modified open-source 2D UNet

Table 1: Results under different model sizes.

Model Method M-STFT↓ PESQ↑ MCD↓ Period↓ V/UV F1↑ UTMOS↑

UNet-16 OT 1.0399 3.743 2.223 0.1108 0.9596 2.8715
LP 1.0253 3.858 2.174 0.1050 0.9614 3.0153

UNet-32 OT 0.9917 4.011 2.048 0.0908 0.9655 3.2254
LP 0.9848 4.097 2.018 0.0881 0.9665 3.2647

UNet-64 OT 0.9670 4.180 1.975 0.0801 0.9704 3.3900
LP 0.9631 4.191 1.942 0.0772 0.9709 3.4231

backbone1, featuring one ResNet block per scale, three scales
in total with no attention modules. We build three model
sizes with channel configurations of [16,32,64], [32,64,128],
and [64,128,256], using group normalization with 2, 4, and 8
groups, respectively. The decoded magnitude and phase spec-
trograms are converted to a waveform via an inverse STFT.
Training details. All experiments use the single-speaker
LJ Speech [17] dataset. Following prior work [18], mel-
spectrograms and target STFTs are extracted using a 1024-
point FFT, a 256-sample hop size, and 80 mel bins (0–8
kHz). We use a train-validation split of 12,950 and 150 sam-
ples [18]. To ensure a fair comparison, both LP-CFM and
OT-CFM are trained with identical settings and a fixed ran-
dom seed. We set λ as 1 × 10−4, matching the σmin value
used in OT-CFM. Models are trained for 500 epochs on a
single RTX 4090 GPU with a batch size of 16. We use the
AdamW optimizer with betas of (0.9, 0.99), learning rate of
5× 10−4, decayed exponentially by 0.99 per epoch.
Evaluation metrics. We report performance using standard
vocoder metrics: multi-resolution STFT (M-STFT) [19],
PESQ [20], mel-cepstral distance (MCD) [21], periodicity
error and V/UV F1 [22], along with UTMOS [23] as an auto-
mated proxy for subjective quality. For sampling, we utilize
first-order Euler ODE-solver with a sampling step of 6 as a
default. Since LP-CFM can produce outputs with various
scales, all target and predicted waveforms for both methods
are peak-normalized to 0.95 before evaluation.

4.2. Results and Analysis

Impact of model size. The analysis begins with model ca-
pacity, examining how it influences the relative behavior be-
tween LP-CFM and OT-CFM. As shown in Table 1, LP-CFM
provides consistent gains across multiple architectures. The
improvements are particularly notable when the model size is
small (e.g., UNet-16), and the gap narrows for larger models.
This performance trend can be attributed to line-projection
geometry of LP-CFM: by targeting the closest point on a line
of valid variants rather than a path converging to a single fixed
point, the transport path length and variability are reduced.
This property may ease the optimization, especially for mod-
els with limited capacity.
Data efficiency. To compare data efficiency between the two
methods, we train models on randomly sampled subsets of

1https://huggingface.co/docs/diffusers/api/models/unet2d

https://huggingface.co/docs/diffusers/api/models/unet2d


Table 2: Results under different dataset sizes on UNet-32.

Trainset Method M-STFT↓ PESQ↑ MCD↓ Period↓ V/UV F1↑ UTMOS↑

LJ - 33% OT 1.0176 3.929 2.124 0.0992 0.9618 3.1118
LP 1.0153 3.975 2.101 0.0976 0.9634 3.1501

LJ - 66% OT 1.0047 3.994 2.051 0.0941 0.9646 3.1718
LP 0.9968 4.071 2.037 0.0902 0.9669 3.2416

LJ - 100% OT 0.9917 4.011 2.048 0.0908 0.9655 3.2254
LP 0.9848 4.097 2.018 0.0881 0.9665 3.2647
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Fig. 2: Step-wise UTMOS comparison between OT-CFM and LP-
CFM on UNet-32. UTMOS scores are shown as line (left axis), and
the bar represents their score difference (right axis).

LJSpeech and compare their performance. Table 2 demon-
strates that LP-CFM consistently surpasses OT-CFM even un-
der limited data scenarios. For example, training with only
66% of the data still yields higher performance than OT-CFM
trained on the full dataset across most metrics. Since LP-CFM
constructs its target distribution by capturing a set of multi-
ple variants with a single elongated Gaussian, the model can
leverage a richer and more diverse set of data instances than
the dataset alone provides. This approach resembles data aug-
mentation, but with a crucial distinction: instead of exposing
on arbitrary variants, LP-CFM dynamically steers the learn-
ing process toward the closest variant under the current flow.
Sampling efficiency. Building on the above findings, we
next examine how the line-projection geometry affects infer-
ence behavior. We evaluate UTMOS performance under vary-
ing step budgets. As shown in Fig. 2, LP-CFM consistently
achieves higher scores across different numbers of steps, with
its advantage most evident in few-step regimes where approx-
imation errors tend to accumulate. These results suggest that
the proposed line-projection geometry—which yields shorter
and more consistent transport paths—not only facilitates op-
timization and improves data efficiency, but also proves effec-
tive in sampling, particularly in low-step settings where error
accumulation is a concern.
Subjective evaluation. To examine how the observed objec-
tive gains translate into perceptual quality, we conducted a
comparative mean opinion score (CMOS) evaluation on 15
randomly chosen validation samples, each rated by 25 lis-
teners across four representative scenarios. We verify the
results with one-sample t-tests against zero, confirming that
all results are statistically significant (p-value < 0.05). As
shown in Table 3, listeners express a clear preference for LP-
CFM in small-model and few-step sampling conditions. In
the other scenarios, LP-CFM also receives consistently posi-
tive ratings, with relatively higher preference under the low-
data setting. Taken together, these results indicate that the

Table 3: Results of CMOS test between OT-CFM and LP-CFM
on representative scenarios with 95% confidence interval. Higher
scores indicate stronger preference for LP-CFM.

Scenario CMOS ↑
UNet-32, 6 steps 0.12±0.09
UNet-16, 6 steps 0.46±0.10
UNet-32, 33% data, 6 steps 0.17±0.10
UNet-32, 3 steps 0.35±0.12

Table 4: Results of ablation study on UNet-32.

Method VCS M-STFT↓ PESQ↑ MCD↓ Period↓ V/UV F1↑ UTMOS↑Mag. Pha.

(1) OT OT x 0.9917 4.011 2.048 0.0908 0.9655 3.2254
(2) OT OT o 5.4160 1.102 11.138 0.6437 0.0058 1.6226

(3) OT LP x 0.9935 4.016 2.030 0.0909 0.9658 3.2263
(4) LP OT x 0.9856 4.088 2.022 0.0880 0.9665 3.2550

(5) LP LP x 0.9859 4.094 2.019 0.0879 0.9665 3.2627
(6) LP LP o 0.9848 4.097 2.018 0.0881 0.9665 3.2647

perceptual advantages of LP-CFM are consistent with its ob-
jective improvements.
Ablation study. To disentangle the contributions of each
component, we evaluate LP-CFM when applied separately to
magnitude (row 4) and phase (row 3), in comparison with OT-
CFM applied to both (row 1). As shown in Table 4, applying it
to the magnitude yielded the dominant improvements, while
phase-only application resulted in smaller gains. This out-
come can be attributed to the dominant role of the magnitude
on speech quality, as well as the inherent complexity of phase
modeling. Ultimately, applying LP-CFM to both components
produced the most balanced performance (row 5).

We also examine the effect of VCS. When combined
with LP-CFM, VCS behaved as an intended safeguard: it
neither boosted performance nor harmed it, yielding compa-
rable or slightly higher scores (row 6). In contrast, applying
VCS to OT-CFM significantly degraded performance (row 2),
which is expected since it does not assume projection-aligned
trajectories. This contrast provides indirect evidence that
LP-CFM has indeed learned the intended projection-aligned
paths. Since VCS explicitly removes the parallel component,
a model not following such trajectories would be expected to
suffer the same degradation observed in OT-CFM.

5. CONCLUSION

In this work, we introduced LP-CFM, a perceptual invari-
ance–aware refinement of conditional flow matching that
aligns training with perceptual equivalence in speech. As a
proof of concept, we evaluated the proposed method in a con-
trolled neural vocoding setup, where it delivered consistent
gains over OT-CFM across diverse conditions. Its advantages
were most pronounced in resource-constrained scenarios, in-
cluding limited model capacity, data scarcity, and few-step
sampling—conditions often encountered in practical applica-
tions. We expect that LP-CFM will serve as a foundation for
more perceptually informed generative speech models and
inspire further exploration of invariance-aware modeling.
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