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Abstract

The objective of this study is to generate high-quality speech
from silent talking face videos, a task also known as video-
to-speech synthesis. A significant challenge in video-to-
speech synthesis lies in the substantial modality gap be-
tween silent video and multi-faceted speech. In this paper,
we propose a novel video-to-speech system that effectively
bridges this modality gap, significantly enhancing the qual-
ity of synthesized speech. This is achieved by learning of
hierarchical representations from video to speech. Specifi-
cally, we gradually transform silent video into acoustic fea-
ture spaces through three sequential stages — content, tim-
bre, and prosody modeling. In each stage, we align vi-
sual factors — lip movements, face identity, and facial ex-
pressions — with corresponding acoustic counterparts to
ensure the seamless transformation. Additionally, to gen-
erate realistic and coherent speech from the visual rep-
resentations, we employ a flow matching model that esti-
mates direct trajectories from a simple prior distribution
to the target speech distribution. Extensive experiments
demonstrate that our method achieves exceptional gener-
ation quality comparable to real utterances, outperforming
existing methods by a significant margin.

1. Introduction

Video-to-Speech (VTS) systems have recently attracted sig-
nificant attention for their capability to convert silent videos
of talking faces into human speech. These systems have a
broad spectrum of applications, such as re-dubbing silent
archival films, providing assistive technologies for individ-
uals with speech disabilities, and enabling natural commu-
nications in loud settings [5, 31, 75]. Recent advancements
in deep learning have propelled this field forward by utiliz-
ing the natural alignment of video and speech as a mode
of training supervision, eliminating the need of additional
annotations such as text transcriptions.

The ultimate goal of VTS systems is to synthesize realis-
tic human speech. A key challenge in building high-quality
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Figure 1. An overview of the proposed system. Our method
learns hierarchical representations from video to speech, focusing
on three key factors: lips, face IDs, and facial expressions. The vi-
sual encoding is converted into the corresponding speech through
an effective flow matching decoder and neural vocoder.

VTS systems lies in the significant information gap between
silent video and spoken audio. Specifically, silent video pri-
marily contains visual features such as lip motion and facial
expressions, while spoken audio includes acoustic charac-
teristics such as tone and pronunciation. As a result, the
VTS systems require capturing the complex relations be-
tween the two modalities, making it difficult to establish an
accurate mapping from visual to acoustic spaces.
Numerous works have been made to enhance the quality
of VTS system while addressing the information gap be-
tween the two modalities. To mitigate the complexity posed
by the inherent variability of speech, some approaches in-
corporate self-supervised speech units [5, 24] or a dedi-
cated lip-reading network [75]. Other studies have focused
on clarifying multiple speaker characteristics by utilizing
speaker embeddings extracted from either the reference au-
dio [52, 59] or the input video [5, 75]. Meanwhile, several
approaches adopt advanced modeling techniques, such as
diffusion models [5, 75, 78], to capture the intricate rela-
tionships between visual and acoustic modalities. Despite
these efforts, current VTS systems still struggle to close the
modality gap, leaving their generation quality significantly
behind that of real human utterances. This underscores the
need for a more effective training pipeline and refined net-
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work architecture for high-quality VTS systems.

In this paper, we propose a novel video-to-speech ap-
proach that effectively bridges the gap between what the
eyes see and what the ears can hear. To achieve this,
we design a hierarchical visual encoder that refines hier-
archical representations from video to speech. Specifically,
we divide VTS mapping into three stages—content, timbre,
and prosody—and incrementally transform visual input into
acoustic feature spaces. Since content exhibits less variation
and directly influences both timbre and prosody [64, 76], we
prioritize content modeling as the first stage. Timbre mod-
eling is placed before prosody modeling, as timbre tends to
be more stable than prosody [28], and distinguishing timbre
helps reduce ambiguity in prosody modeling [64].

In addition, to facilitate seamless transformation at each
stage, we align multiple visual cues with their acoustic
counterparts (Figure 1). For content modeling, we lever-
age lip motions, inspired by the strong correlation between
lip movements and speech content [21, 67]. For timbre
modeling, we incorporate face identity as a conditional in-
put, drawing from the cross-modal biometric correlation be-
tween facial appearance and timbre [15, 54, 56]. Lastly, for
prosody modeling, we utilize facial expressions, which con-
vey emotions and subtle nuances, naturally aligning with
pitch and energy variations in speech [8, 69].

Based on the encoded visual representations which are
adapted to the acoustic feature space, we aim to generate
realistic mel-spectrograms. To this end, we employ a flow
matching generative decoder that offers a streamlined and
accurate generation process, achieving high-fidelity speech
synthesis in fewer sampling steps [43, 51]. We conduct ex-
tensive experiments on two datasets collected from in-the-
wild settings [1, 7]. The experimental results demonstrate
that our method achieves exceptional audio quality, making
a Mean Opinion Score (MOS) gap of only 0.05 in natural-
ness, compared to the real human utterances. The synthe-
sized audio samples can be found on our demo page'.

2. Related Works
2.1. Video-to-Speech

VTS systems have experienced significant advancements,
transitioning from rule-based approaches [37, 38] to con-
temporary end-to-end methods [72, 74]. Early deep learn-
ing approaches predominantly employed convolution neu-
ral networks, demonstrating its effectiveness in VTS sys-
tems [12, 36]. More recent studies have improved genera-
tion quality by incorporating advanced modeling techniques
such as generative adversarial networks [32, 53], normaliz-
ing flows [17, 31], and diffusion networks [5, 75, 78].
Meanwhile, there have been efforts to utilize auxiliary
information to mitigate the difference between video and

1https://mm.kaist.ac.kr/projects/faces2voices

speech data distributions. To complement the lack of su-
pervision from speech data itself, Kim et al. [33] uti-
lize text transcriptions as an auxiliary target. More re-
cent works [6, 24, 31, 42] have adopted quantized self-
supervised speech representations, eliminating the need of
text transcriptions. In order to capture multiple speaker
characteristics, many works incorporate speaker embed-
dings derived from the reference audio [6, 18, 52, 59]. How-
ever, since obtaining reference audio is not always feasi-
ble during inference process, DiffV2S [5] introduces video-
driven speaker embeddings focusing on lip frames, whereas
LipVoicer [75] estimates speaker information through a sin-
gle portrait image. In contrast to previous works, we focus
directly on bridging the modality gap between video and
speech, while associating multiple visual cues with their
corresponding acoustic counterparts.

2.2. Hierarchical Speech Generation

Due to the inherent complexity of speech, various studies
have explored hierarchical generative approaches for high-
quality speech synthesis. In the context of text-to-speech
synthesis, Hsu et al. [22] develop a system that uses two-
tiered latent variable modeling based on a conditional vari-
ational autoencoder. The first level captures coarse acous-
tic information, while the second level deals with specific
attribute configurations. Both PVAE-TTS [39] and Grad-
StyleSpeech [30] employ hierarchical structures in adaptive
text-to-speech systems. To address the challenges of mim-
icking new speaking styles, these systems improve their
adaptation capabilities through a progressive variational au-
toencoder and a hierarchical encoder, respectively. Simi-
larly, HierVST [41] adopts a hierarchical structure in their
voice style transfer system. To effectively handle speaker
styles not encountered during training, HierVST first gener-
ates linguistic information and then integrates it with resid-
ual acoustic information through hierarchical variational in-
ference. In our work, we explore hierarchical represen-
tations from silent video to human speech, and propose
a high-quality VTS system that generates natural speech
through these hierarchical representations.

2.3. Flow Matching

Flow matching [43] has recently gained increasing atten-
tion due to its capability to generate realistic data samples
with straight trajectories, addressing the inherent slow sam-
pling issues in diffusion-based models [20]. The effective-
ness of flow matching has been demonstrated across various
research fields, including vision [14, 25] and audio [45, 60]
domains. In vision domain, Fischer et al. [14] adopt a flow
matching model between a frozen diffusion model and a
convolution block, which enables effective image synthe-
sis. Similarly, Hu et al. [25] utilize flow matching in their
image editing pipeline, benefiting from its streamlined and
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Figure 2. The detailed architecture of the our framework. Our approach gradually closes the substantial modality gap between video and
speech, while aligning key visual cues—lip movements, face identity, and facial expressions—with their corresponding speech attributes—
content, timbre, and prosody. The flow matching decoder effectively estimates mel-spectrogram distribution, conditioned on the visual
encoding . x; represents an intermediate state of mel-spectrogram at time-step ¢, and ¢Y7 denotes the corresponding flow.

efficient inference process. In the realm of audio generation,
SpeechFlow [45] applies flow matching to build a robust
foundation model for speech, showcasing powerful perfor-
mance across diverse downstream tasks including speech
separation and enhancement. MusicFlow [60] introduces
a text-guided music generation method based on two flow
matching networks to capture the conditional distribution of
semantic and acoustic features. Building on these advance-
ments, our VTS system employs flow matching to bridge
the visual-to-audio modality gap, resulting in the natural
and intelligible generation of speech from silent video.

3. Method
3.1. Overall Architecture

As illustrated in Figure 2, our framework mainly consists of
a hierarchical visual encoder and a flow matching decoder.
The hierarchical visual encoder gradually refines video
representations, aligning visual cues—lip movements, face
identity, and facial expressions—with their corresponding
acoustic counterparts—content, timbre, and prosody. This
ensures a seamless transformation from visual to acous-
tic modalities, enhancing the naturalness and clarity of the
synthesized speech. The resulting visual encoding p are
fed into a flow matching decoder, and then flow matching
decoder generates a high-quality mel-spectrogram, which
is subsequently converted into audible waveform by a pre-
trained neural vocoder [35].

3.2. Hierarchical Visual Encoder

To effectively close the large gap between video and speech,
we propose a hierarchical visual encoder that gradually

transforms input videos into acoustic feature spaces, start-
ing from a fundamental attribute and advancing to com-
plex ones. The visual encoder sequentially models content,
timbre, and prosody, with mappers that enable interaction
across these distinct modeling processes. Each mapper is
based on Transformer layers which facilitate better under-
standing of underlying sequences [16].

Inspired by the cross-modal correlations between face
and speech, our visual encoder aligns lip motions, fa-
cial identity, and expressions with corresponding acoustic
attributes—content, timbre, and prosody. This is achieved
through the dedicated facial encoders and acoustic attribute
adapters. Each facial encoder processes specific facial el-
ements, and the following transposed convolution layers
learn temporal alignment between visual and acoustic fea-
tures. The adapters, which include acoustic attribute predic-
tors, align visual cues with their corresponding speech fea-
tures, and adapt these features into latent sequence. As in
previous works [31, 63], we adopt teacher-forcing strategy
to train the acoustic attribute adapters. The following para-
graphs detail each modeling stage in our visual encoder.

Content. Building on the strong correlation between lip
movements and speech content [21, 67], we begin with con-
tent modeling by focusing on the lip motions in silent video.
We extract lip motion features through AV-HuBERT [67],
which has been demonstrated to offer a powerful acoustic
representations from lip movements [0, 24]. Considering
the fact that hidden features from each layer of the AV-
HuBERT capture distinct aspects of speech [57], we inte-
grate all these features through a learnable weighted sum-
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mation. This allows the model to learn the optimal combi-
nation of the intermediate AV-HuBERT features, enhancing
the capability of the resulting representation [26, 70].

The following content adapter, which includes a content
predictor, strengthens the correlation between lips and con-
tents, while enriching content information to the hidden se-
quence. The target content sequence of the predictor is ob-
tained from the last layer of the HUBERT [23] and subse-
quently quantized by the K-means algorithm (i.e., speech
units). In addition to convolution blocks (C'P) [73], the
content predictor incorporates an auxiliary masked convolu-
tion block (C P,,,) [44], as illustrated in Figure 3. This block
estimates the target value at a certain frame from adjacent
frames, allowing the model to learn temporal dependencies
across the sequence. We optimize the content predictor by
using Cross Entropy (CE) loss with label smoothing, which
is defined as:

L. = a{CE(c,CP(h;)) + CE(c, CP,,(hy))}

+ (1-a){CE(u, CP(h;)) + CE(u, CP,,(y))}, )
where c, h;, and u denote the target content sequences, the
hidden lip features, and the uniform distribution, respec-
tively. The label smoothing parameter « is set to 0.9.

The content sequences are embedded via an learnable
embedding table and then added to the hidden sequence.
These content-adapted features, which serve as the basis
for the remaining hierarchical speech modeling, are passed
to the subsequent timbre modeling module through the
Content-to-Timbre (C2T) mapper.

Timbre. Timbre, similar to face, is a distinct personal
characteristic that specifies one’s identity [29, 50]. Based on
the findings that reveal the biometric relation between facial
appearance and timbre [54, 56], we leverage face identity to
model timbre. ArcFace [9] is utilized to extract discrimina-
tive face identity embeddings, which are used to predict tim-
bre in combination with the output of C2T mapper (h o).
The time-averaged feature from the first layer of Hu-
BERT [23] is used as the target timbre representation, as
it is well-known for rich timbre information [4, 13]. Since
timbre feature does not contain temporal information, the
timbre predictor relies only on a convolution pipeline (7'P)
which is optimized by Mean Absolute Error (MAE) loss:

Ly = MAE(t, TP(Fusion(hyiq, heat))), 2)

where t denotes the target timbre and h ;4 represents the
face identity embeddings. The timbre value is embedded
by a single linear layer and incorporated to the latent fea-
ture [39], along with the output from previous level of con-
tent adapter. The Timbre to Prosody (T2P) mapper refines
this timbre-adapted feature which are then fed to the subse-
quent prosody modeling stage.
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Figure 3. Speech attribute prediction pipeline. The content and
prosody predictor incorporate an auxiliary masked convolution
block to enrich contextual information.

Prosody. Provided that prosody exhibits multiple varia-
tions even with the same contents and timbre, we regard
prosody as the most complex factor which needs to be mod-
eled at the last stage. Specifically, we model pitch and en-
ergy sequence based on facial expression features, inspired
by [8, 69]. To accurately generate prosody variations from
expressions, we leverage a pre-trained facial expression en-
coder [77] that captures subtle details of expressions.

The prosody adapter comprises both pitch and energy
predictors, with target values obtained from the pYIN al-
gorithm [49] for pitch estimation and the frequency-wise
L2 norm of mel-spectrograms for energy”. Similar to the
content predictor, the prosody predictors consist of auxil-
iary masked blocks (PP,,) along with convolution blocks
(PP), and are trained with their respective MAE losses:

L, =MAE(p, PP(Fusion(hy., h.p)))

3
+ MAE(p, PP, (Fusion(hy., heap))), 3)

where p, hy., and h.y, refer to the target prosody se-
quences, the hidden features for facial expressions, and the
output of T2P mapper, respectively. Pitch and energy se-
quences are embedded through their respective convolution
layers, and then added to hidden sequence with the timbre
feature from the previous stage.

Finally, we add Transformer blocks followed by a single
projection layer to yield visual encoding p. This encod-
ing serves as the conditional input for the subsequent flow
matching decoder, which is explained in the next section.

3.3. Flow Matching Decoder

We utilize a flow matching generative model as our decoder
to effectively model the target mel-spectrogram distribu-
tion. We first provide a brief overview of flow matching
and then detail the architecture of our decoder.

Flow Matching Overview. Let x be a data sample from
the target distribution ¢(x), and let po(x) be the simple prior
distribution. Flow matching is a method for fitting a proba-
bility density path p; : [0,1] x R? — R between py(x)

2For robust training, the pitch value is standardized to have zero mean
and unit variance over an entire sequence.
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and p; (x), which approximates g(x). Following Lipman et
al. [43], we define the flow ¢; as the mapping between the
two distributions through the ordinary differential equation:

o0 =uai).  G=x @
where ¢ € [0,1] and v¢(x) = wvi(x;0) is the vector field
parameterized by 6 that specifies the trajectory of the prob-
ability flow. This formulation generates the probability path
D¢, allowing us to sample from p, by solving the initial value
problem. Assume that there exist a known vector field u,
that generates p;. The flow matching objective aims to align
v¢(x) with u;. In practice, however, this flow matching ob-
jective is intractable because we lack prior knowledge of p,
or v;. To address this, Lipman et al. [43] construct p; (x) via
a mixture of simpler conditional paths, for which the vector
field can be easily computed.

In our case, we utilize simple optimal transport path as
our conditional flow to ensure effective and efficient train-
ing [51]. Consequently, our Optimal Transport Conditional
Flow Matching (OT-CFM) loss can be defined:

Lor—crm(0) :Et,q(x1)’p0(x0) \|U?T(¢?T(Xo)|xl)
— v (7" (x0) | p2: 6) 1%,

where xo and x; are data samples from po(x) and p; (x),
respectively. The flow is defined as ¢9T(x) = (1 — (1 —
Omin)t)Xo + tx1, then the conditional target vector field is
given by uT (¢97(x¢)[x1) = %1 — (1 —0min)Xo. Due to the
linear trajectory, this achieves superior performance with
fewer sampling steps compare to score-based models [20].

(&)

Decoder Architecture. Our decoder is based on a U-Net
architecture incorporating residual 1D convolution blocks
followed by a Transformer block with snake beta activation
function [40, 51]. For better sampling quality, we incorpo-
rate a negative log-likelihood encoder loss [51, 58], which
can be defined as follows:

T
£enc - _Zlogw(xi;lj’ial)a (6)

i=1

where ¢(-;u;,I) is a probability density function of
N (p;,I), and T denotes the temporal length. To summa-
rize, the total loss function L;,; is defined as follows:

ﬁtotal = EOT—CFM + Eenc + )\CLC + )\tﬁt + )\p£p7 (7)

where A¢, A¢, and A, are set to 0.5 in our experiments.
Moreover, to further enhance conditional probability
path, we incorporate Classifier-Free Guidance (CFG) [19]
which has demonstrated its effectiveness in improving gen-
eration quality [34, 55]. During training, we randomly drop

the conditional input (xt) with a fixed probability of 0.1. In
inference, the speech decoder iteratively refines x; with a
step size of ¢, directing the trajectory away from the uncon-
ditional flow. We employ an Euler solver with CFG:

Xere = X + €{(1+ B) - v (67" (x)|11;0)
= B o) (x)|2;0)},

where 3 denotes the guidance scale for CFG.

®)

4. Experimental Settings

4.1. Datasets

LRS3-TED [1] is a well-established dataset for evaluat-
ing VTS systems. It includes approximately 440 hours of
video clips sourced from TED and TEDx talks, featuring
thousands of speakers and over 50,000 words. We split the
dataset in accordance with previous works [5, 6, 52], ensur-
ing no speaker overlap between the training and test sets.

LRS2-BBC [7] is a large-scale and real-world video
dataset, which comprises 224 hours of video from BBC
television shows. To assess the generalization capability
across different datasets, we also evaluate our model on the
LRS2 dataset. It is important to note that all models are
trained exclusively on the LRS3 dataset, while the LRS2
dataset is used solely for test dataset.

4.2. Preprocessing

We crop face sequences from 25 fps video using Reti-
naFace [10] and extract facial landmarks with FAN [3]. Lip
frames are then extracted based on these landmarks and
converted to grayscale. The corresponding 16 kHz audio
is transformed into a log-scale mel-spectrogram with a hop
size of 320, window size of 1280, and 80 mel bins, re-
sulting in a fixed 1:2 length ratio between the video and
mel-spectrogram. We use pre-trained HuBERT (Large)® to
obtain the target content and timbre features. Content fea-
tures are then quantized by K-Means algorithm, trained on
LJ Speech dataset [27], with 1,000 clusters.

4.3. Implementation Details

In our visual encoder, AV-HuBERT (Large)* is used for
lip encoder, and all Transformer blocks consist of 2 Trans-
former layers with 4 attention heads and a latent dimen-
sion of 512. For the fusion module, we concatenate two
distinct latent features along the channel dimensions and
project them using 2 convolution blocks. The configura-
tion of our flow matching decoder follows that of Matcha-
TTS [51] with o, set to 1074, Additionally, we adopt
cosine scheduling strategy for the time-step ¢ [11].

3https://huggingface.co/facebook/hubert-large-
1160k
4https://github.com/facebookresearch/av_hubert
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Our model is trained on four NVIDIA A5000 GPUs with
a batch size of 64. We use AdamW optimizer [47] with 5,
=0.8, B2 =0.99, and € = 10~°. The initial learning rate
is set to 10~*, with a decay rate of 0.999'/8. Random 96
consecutive frames are used during training, and the model
is trained for 350K steps. For robust training, we apply data
augmentation to lip frames, as in previous works [6, 31, 52].

4.4. Evaluation Metrics

The generation performance is evaluated through both sub-
jective and objective metrics. For subjective evaluation, we
conduct 5-scale Mean Opinion Score (MOS) tests, where 25
domain-expert subjects rate the quality of 40 speech sam-
ples in terms of naturalness and intelligibility. In the natu-
ralness test, subjects are asked to focus on the audio qual-
ity, while in the intelligibility test, they assess the clarity of
the speech content. For objective metrics, we measure UT-
MOS [66] and DNSMOS [62], which are widely used net-
works to estimate perceptual audio quality [65, 68]. We also
calculate the root mean square of FO (RMSE () to assess
pitch accuracy and the Word Error Rate (WER) to evaluate
the intelligibility. WER quantifies the differences between
the ground truth text labels and speech recognition results
obtained from Whisper (Medium) [61].

4.5. Baseline Methods

Our method is compared to several state-of-the-art methods:
SVTS [52], Intelligible [6], LTBS [31], and DiffV2S [5].
We follow the official implementations for Intelligible [6],
LTBS [31], and DiffV2S [5], as provided by the authors.
Regarding SVTS, the LRS3 test samples are provided by
the authors, while the LRS2 test samples are generated from
our own reproduction, based on the official implementation
of Intelligible®. Note that both SVTS and Intelligible use
speaker embeddings derived from reference speech, while
LTBS, DiffV2S, and our method estimate speaker charac-
teristics directly from the silent video.

5. Experimental Results

5.1. Subjective Evaluation

To examine the perceptual quality of our method, we per-
form subject MOS tests which are regarded as the gold
standard for evaluating speech generation systems [46, 48].
MOS tests are conducted on the LRS3 test set, focus-
ing on two key criteria: naturalness and intelligibility.
As demonstrated in Table 1, our method produces high-
quality speech, significantly outperforming existing meth-
ods on both naturalness and intelligibility. Furthermore, our
method closely approximates the naturalness of the ground
truth speech with a minimal gap of only 0.05. This indicates

Shttps : / /github . com/ choijeongsoo / lip2speech —
unit

Method Naturalnesst Intelligibilityt
Ground Truth 454 +0.12 4.84 + 0.06
Audio-driven speaker embedding

SVTS [52] 1.10 £ 0.06 1.66 + 0.14
Intelligible [6] 242 4+0.18 3.40 +£0.20
Video-driven speaker embedding

LTBS [31] 2.524+0.14 2.10 £ 0.15
DiffV2S (1000) [5] 2.97 £ 0.17 3.16 £ 0.19
Ours (10) 4.49 £ 0.11 4.01 £ 0.15

Table 1. Subjective evaluation results on LRS3 test dataset. The
results are presented with 95% confidence interval. The number in
parenthesis means the number of sampling steps.

that the speech generated by our method is almost indistin-
guishable from real human recordings in terms of percep-
tual audio quality.

5.2. Objective Evaluation

In addition to subjective MOS tests, we compute UTMOS,
DNSMOS, RMSE;q, and WER, as objective evaluation
metrics. As shown in Table 2, our method shows clear im-
provements over standard VTS systems on both the LRS3
and LRS2 datasets, indicating that our method successfully
reduces the modality gap between video and speech. No-
tably, our method achieves the best audio quality across all
datasets, as measured by UTMOS [66] and DNSMOS [62],
even exceeding those of ground truth audio. This can be at-
tributed to the fact that our approach generates clean speech
solely from face sequences, excluding background noises.
In contrast, real-world ground truth audio often contains
significant background noise, which adversely affects the
audio quality. Furthermore, the small quality difference
in our method between using 10 and 1000 sampling steps
confirms that the flow matching decoder can produce high-
fidelity results with only a few sampling steps.

5.3. Analysis on Speaker Similarity

We evaluate the robustness of video-driven speaker repre-
sentations to determine whether the video-driven embed-
dings capture accurate speaker characteristics when com-
pared to ground truth audio. To do this, we compute
Speaker Embedding Cosine Similarity (SECS) between the
speaker representations from the target and synthesized au-
dio, using all samples from the LRS3 test set. For an
accurate and comprehensive analysis, we extract speaker
representations using two different methods: GE2E [71],
a widely used speaker verification model for evaluating
speaker similarity [5], and VoxSim [2], designed specifi-
cally to estimate perceptual voice similarity. As shown in
Table 3, our method achieves the best SECS scores in cases
of both GE2E and VoxSim embeddings. This indicates that
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LRS3-TED LRS2-BBC

Method Steps

UTMOST DNSMOStT RMSEf,] WER] UTMOST DNSMOST RMSE;, WER]
Ground Truth - 3.545 2.582 - 2.29 3.013 2.256 - 8.93
Audio-driven speaker embedding
SVTS [52] - 1.283 1.860 56.929 84.98 1.387 1.434 53.475 83.38
Intelligible [6] - 2.702 2.395 39.377 29.60 2.331 2.000 41.233 39.53
Video-driven speaker embedding
LTBS [31] - 2417 2.361 40.006 84.08 2.288 2.174 43.653 94.25
DiffV2S [5] 1000 3.058 2.558 40.893 41.07 2.945 2.363 44.414 54.86
Ours 10 4.031 2.789 39.013 30.45 3.921 2.586 43.441 39.37
Ours 1000 3.993 2.759 38.928 30.37 3.881 2.552 43.702 39.05

Table 2. Results of objective evaluation on both LRS3 and LRS2 test datasets. 1 denotes higher is better, and | means lower is better. Bold
and underlined values represent the best and second-best results, respectively.

our video-driven embeddings capture precise speaker char-
acteristics, making the voice of the generated speech more
closely resemble that of original speaker, compared to ex-
isting methods that utilize video-driven embedding.

5.4. Mel-spectrogram Visualization

For an intuitive comparison with baseline methods, we vi-
sualize the generated speech by using mel-spectrograms
alongside ground truth speech. Figure 4 depicts these vi-
sualization results, where the mel-spectrogram from our
system closely resembles the ground truth, capturing fine
acoustic details and accurate harmonic structure. Addi-
tionally, we observe that our method enriches prosody by
leveraging facial expressions, as reflected in the dynamic
variations of the fundamental frequency along with abrupt
changes in facial expressions.

5.5. Ablation Study

To verify the effectiveness of each component in our
method, we conduct ablation studies using various metrics,
including MAE g which refers to the MAE between the en-
ergy sequences of the target and predicted speech. For the
ablation study, we set the number of sampling steps to 10
and use the LRS3 dataset.

Hierarchical Modeling. We first explore the impact of
hierarchical video-to-speech encoding, with the results pre-
sented in Table 4. When all mappers are removed and
acoustic attributes are modeled simultaneously (w/o Hier),
the performance shows a noticeable drop across all metrics,
underscoring the benefits of learning hierarchical represen-
tations between video and speech. In our preliminary ex-
periments, the absence of content modeling results in in-
comprehensible speech, implying the crucial role of content
modeling in constructing a robust VTS system. Removing
the timbre (w/o Timbre) or prosody modeling stage (w/o
Prosody), along with their respective mappers, also leads to

Method \ LTBS DiffV2S Ours (10) Ours (1000)

GE2ET | 0.609 0.621 0.650 0.650
VoxSim? | 0.399 0.433 0.495 0.494

Table 3. SECS evaluation results on LRS3 test set. All speaker
identities are unseen during training.

consistent quality degradation, verifying the importance of
these stages in building a high-quality VTS system.

Facial Features. The benefits of associating facial fea-
tures with their acoustic counterparts are also clearly ev-
ident. Excluding facial identity (w/o Face ID) or expres-
sion (w/o FE) features results in degraded quality, including
declines in speaker similarity and prosody accuracy. This
result shows the benefits of utilizing face identity and fa-
cial expressions as conditional inputs, confirming the cross-
modal correlation between facial and acoustic features.

Training Strategy. We investigate the effect of weight
summation across AV-HuBERT intermediate features (w/o
WS) and the masked convolution block in the content and
prosody predictors (w/o MP). As shown, these modules
collectively contribute to improving model performance.
In particular, integrating AV-HuBERT features through
weighted summation strengthens acoustic capabilities of the
representations, leading to noticeable degradation across all
metrics except for a slight difference in UTMOS.

Guidance Scale. To find the optimal guidance scale /3,
we assess the model performance on the LRS3 validation
set. In Table 5, the benefits of applying CFG are evident in
the first row (8 = 0; no CFG applied), where performance
decreases across all metrics except RMSE . We analyze
the trade-offs across various guidance scales and select 8 =
0.7, as it yields the best results for UTMOS and WER.
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Silent Video

LTBS Intelligible SVTS  Ours (10)

Diffv2s

Figure 4. Mel-spectrogram visualization compared to Ground Truth (GT) speech. As highlighted in the red boxes, the proposed method
effectively captures both accurate and dynamic fundamental frequency, along with synchronized changes in facial expressions.

Method UTMOST RMSE;) MAEg]| WER| GE2E}

Ours (10) 4.031 39.013 0.650 3045  0.650
w/o Hier 3.737 40.260 0763  33.64  0.636
w/o Timbre 3.858 39.563 0.635 3115 0.632

w/o Prosody 3.866 39.590 0.677 35.03  0.653
w/o Face ID 4.001 40.751 0.667 31.38  0.640

w/o FE 3.965 40.115 0.662 31.08  0.651
w/o WS 4.038 40.286 0.674 3090  0.649
w/o MP 3.986 39.145 0.650 30.89  0.654

Table 4. Ablation study results on the LRS3 test set. For brevity,
we use the following abbreviations: Hier for hierarchical mod-
eling, FE for facial expressions, WS for weighted summation in
AV-HuBERT, and MP for the masked convolution prediction.

6. Conclusion

In this paper, we propose a novel VTS framework that
generates high-quality speech from silent videos of talk-
ing faces. We directly address the large modality gap
between video and speech, and successfully mitigate the
gap by learning hierarchical associations between the two
modalities. Additionally, we incorporate flow matching into

B UTMOST RMSE;yl MAEp| WER| GE2E}

0 3.799 34.797 0.793 25.71 0.798
0.5 3.944 35.171 0.734 2547  0.800
0.7 3.946 35.290 0.726 25.27  0.798
1.0 3.941 34.982 0.719 2538  0.794
2.0 3.831 35.881 0.707 2578  0.781
4.0 3.297 37.300 0.674 28.03  0.745

Table 5. Analysis of guidance scale on LRS3 validation set. 5 = 0
refers to not using classifier-free guidance.

the VTS system to produce realistic speech while preserv-
ing fine details. Both subjective and objective evaluations
demonstrate the superior quality of our method compared to
existing approaches. We also conduct comprehensive abla-
tion study and validate the effectiveness of each component
of our method.
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