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CrossSpeech++: Cross-lingual Speech Synthesis
with Decoupled Language and Speaker Generation

Ji-Hoon Kim, Hong-Sun Yang, Yoon-Cheol Ju, Il-Hwan Kim, Byeong-Yeol Kim, and Joon Son Chung

Abstract—The goal of this work is to generate natural speech in
multiple languages while maintaining the same speaker identity,
a task known as cross-lingual speech synthesis. A key challenge of
cross-lingual speech synthesis is the language-speaker entangle-
ment problem, which causes the quality of cross-lingual systems
to lag behind that of intra-lingual systems. In this paper, we
propose CrossSpeech++, which effectively disentangles language
and speaker information and significantly improves the quality of
cross-lingual speech synthesis. To this end, we break the complex
speech generation pipeline into two simple components: language-
dependent and speaker-dependent generators. The language-
dependent generator produces linguistic variations that are not
biased by specific speaker attributes. The speaker-dependent
generator models acoustic variations that characterize speaker
identity. By handling each type of information in separate mod-
ules, our method can effectively disentangle language and speaker
representation. We conduct extensive experiments using various
metrics, and demonstrate that CrossSpeech++ achieves significant
improvements in cross-lingual speech synthesis, outperforming
existing methods by a large margin.

Index Terms—Speech synthesis, cross-lingual speech synthesis,
speaker generalization, prosody modelling.

I. INTRODUCTION

IT is believed that over 60 percent of the global population
speaks at least two different languages [1], [2]. In line with

the recent trends in globalization, there has been growing in-
terest in multi-lingual speech processing such as multi-lingual
speech recognition [3], [4] or language identification [5], [6].
In particular, cross-lingual Text-to-Speech (TTS) has attracted
a large amount of attention due to its a range of applications,
such as creating language educational content, developing
conversational AI agents, and dubbing foreign movies.

Cross-lingual TTS focuses on generating natural-sounding
speech in multiple languages while preserving the unique
voice characteristics of the target speaker (e.g., synthesizing
fluent Korean, Chinese and Japanese speech in the voice of
Joe Biden). However, compared to intra-lingual TTS, which
achieves almost human-like generation quality, the quality of
cross-lingual TTS still lags far behind [7]–[9]. One main chal-
lenge that degrades the generation quality of cross-lingual TTS
is the language-speaker entanglement problem. Specifically,
since it is common for each speaker in a training dataset to
speak only one language, there is a substantial risk of speaker
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identity becoming intertwined with language information dur-
ing the training process. In the extreme scenario where there
is only a single speaker per language in the training data,
the language identity perfectly matches the speaker identity.
These entangled representations hinder natural cross-lingual
speech generation when the language identity is switched
during the inference process, leading to unexpected speaker
characteristics or unnatural pronunciation in the generated
cross-lingual speech.

Numerous attempts have been made to disentangle language
and speaker representations during training. Instead of us-
ing language-dependent text representation (e.g., graphemes),
some works explore text representations which can be general-
ized cross multiple languages [10]–[12]. Other works leverage
domain generalization training techniques such as domain ad-
versarial training [13] or mutual information minimization [14]
or information bottleneck methods [15]. More recently, other
works have utilized Self-Supervised Learning (SSL) speech
representations based on the finding that SSL features capture
only specific aspects of speech [16], [17]. Although previous
studies have focused on decomposing language and speaker
information, the decomposition is limited to the input features
and does not fully address the entanglement problem. In
other words, even if language and speaker representations
are separated in the input token space, they are expected
to be recombined when generating acoustic representations.
This reintegration of separated representations prevents the
synthesis of natural cross-lingual speech.

In this paper, we propose CrossSpeech++ which improves
the quality of synthesized cross-lingual speech by decompos-
ing language and speaker information in the output acoustic
feature space. As depicted in Fig. 1, CrossSpeech++ breaks
intricate speech generation pipeline into two simple generator:
the Language-dependent Generator (LDG) and the Speaker-
dependent Generator (SDG), each of which produces the
corresponding representations in the output feature space. The
language-dependent representations capture linguistic varia-
tion in speech, such as pronunciation and intonation, while
speaker-dependent representations characterize speaker at-
tributes such as timbre and pitch.

Specifically, the LDG includes three components: Mix Dy-
namic Speaker Layer Normalization (MDSLN), the Language-
Dependent Variance (LDV) adaptor, and the linguistic adaptor.
MDSLN modulates text features with randomly mixed speaker
information, mitigating language-speaker entanglement. The
LDV adaptor and linguistic adaptor model linguistic-related
variations, enhancing robust cross-lingual speech generation.
Similarly, the SDG comprises two modules: Dynamic Speaker
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Fig. 1. CrossSpeech++ operates as follows: From text inputs, the language-dependent generator produces language-dependent representations that capture
linguistic characteristics drived solely from text inputs. The following speaker-dependent generator colorize speaker-specific attributes, and the mel-spectrogram
is produced by summing representations from both generators. The output mel-spectrogram is then converted to an audible waveform by a pre-trained neural
vocoder.

Layer Normalization (DSLN) and the Speaker-Dependent
Variance (SDV) adaptor. Different from MDSLN, DSLN con-
veys speaker information, ensuring accurate speaker identity.
The SDV adaptor introduces speaker-specific acoustic varia-
tions, which are crucial for generating natural prosody.

We conduct extensive experiments to validate the effec-
tiveness of CrossSpeech++, including subjective and ob-
jective evaluation metrics. The results demonstrate that
CrossSpeech++ significantly improves the quality of generated
cross-lingual speech, in terms of both subjective and objective
evaluation metrics. The synthesized audio samples can be
found on our demo page1.

II. RELATED WORKS

A. Speech Synthesis

Speech synthesis (text-to-speech, TTS), the process of syn-
thesizing human speech from text, has a long history of
innovation. With the development of deep neural networks,
recent deep-learning based TTS models have shown remark-
able speech quality compared to early concatenative [18]
and statistical methods [19], reaching speech quality close to
that of real human utterance [20]. Typically, these methods
involve converting a text sequence into intermediate acoustic
representations and then transforming them to an audible
waveform using either an external vocoder [21], [22] or an
internal decoder [23], [24]. They employ various backbone
networks such as dilated CNN [25], RNN [26], [27], and feed
forward transformer [28], [29].

Recent advancements have prompted TTS research
to explore various topics such as multi-speaker [30],
lightweight [31], and cross-lingual TTS [13]. Among these
topics, cross-lingual TTS, in particular, demonstrates inferior
synthetic quality compared to intra-lingual TTS mainly due to
the language-speaker entanglement problem. In this paper, we
focus on improving the quality of cross-lingual TTS to achieve
high-quality speech synthesis on par with intra-lingual TTS.

B. Cross-lingual Speech Synthesis

Cross-lingual TTS, a branch of TTS, aims to produce
natural speech in multiple languages while maintaining the
same speaker identity. In comparison to intra-lingual TTS,
the quality of cross-lingual TTS remains weak due to the
challenges in producing accurate speaker timbre and natural-
sounding foreign accents. The inferior quality of cross-lingual
TTS primarily arises from the language-speaker entanglement
issue [13]. To address this, numerous efforts have been made,
which generally fall into two broad categories: one is to

1https://mm.kaist.ac.kr/projects/CrossSpeechpp

leverage language-agnostic input representation, and the other
seeks to learn disentangled representation.

Instead of relying on language-dependent input represen-
tations such as graphemes, some works present their cross-
lingual systems based on language-independent input repre-
sentations, which can be commonly used for multiple lan-
guages. Zhan et al. [11] employ the International Phonetic
Alphabet (IPA) and demonstrate its superiority over language-
dependent phonemes in enhancing the quality of cross-lingual
TTS. Li et al. [10] adopt UTF-8 byte representations for
encoding typographic information, distancing their system
from language-specific constraints. Staib et al. [32] and Lux
& Vu [12] utilize input representations derived from IPA
articulation, specifically designed to maintain consistent topol-
ogy across different languages. Furthermore, Saeki et al. [33]
explore the cross-lingual transferability based on BERT-like
multilingual language model [34], pushing the boundaries of
cross-lingual transfer in TTS.

Another approach presents training strategy to learn disen-
tangled language and speaker representations. Zhang et al. [13]
employ domain adversarial training [35] to prevent the leakage
of speaker information from text encoding. Xin et al. [14]
leverage mutual information minimization loss [36] to remove
common attributes between language and speaker represen-
tation. SANE-TTS [37] proposes the speaker regularization
loss to avoid speaker bias in text duration predictor, and Gen-
erTTS [15] incorporates an information bottleneck to disen-
tangle timbre and speaker style. More recently, DSE-TTS [16]
and ZMM-TTS [17] utilize SSL-based speech representations,
as their discretized features contain less speaker-dependent
information. Although these previous works have attempted to
address the language-speaker entanglement problem, the level
of disentanglement has been limited to the input token space.
To address this, in our previous work, CrossSpeech [38], we
explicitly divide the speech generation pipeline into language-
related and speaker-related components, with each generating
the corresponding representation in the output feature space.
In this paper, we further explore the advantages of splitting
the speech generation to develop a more natural cross-lingual
TTS system. Moreover, we incorporate additional language-
and speaker-specific attributes to further enhance generation
quality.

C. Domain Generalization

Domain generalization focuses on training models to per-
form well on any unseen domain, which is not accessible
during training. Numerous seminal works have collectively ad-
vanced the field of domain generalization. Many cross-lingual
TTS methods leverage domain generalization techniques with
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Fig. 2. The overall architecutre of CrossSpeech++. el and es denote the language and speaker embeddings which are derived from trainable lookup tables.
Detailed architectures of Language-dependent (LD) conformer encoder and Speaker-dependent (SD) conformer encoder are depicted in (b) and (c), respectively.
MHA means multi-head attention. We replace the final Layer Normalization (LN) in the conformer with Mix-dynamic Speaker Layer Normalization (MDSLN)
in the LD encoder and Dynamic Speaker Layer Normalization (DSLN) in the SD encoder.

the aim of enabling the models to effectively generalize well
to unseen language-speaker combinations.

One of the foundational works in domain generalization
is domain adversarial training (DAT) [35]. DAT introduces a
gradient reversal layer that ensures the feature extractor learns
to produce features indistinguisable across multiple domains
by reversing the gradients from a domain discriminator during
backpropagation. Arjovsky et al. [39] presents invariant risk
minimization, a framework aims at learning domain-invariant
predictors by leveraging the principle of risk invariance. Zhou
et al. [40] propose a simple yet effective approach to domain
generalization called MixStyle. This technique involves mix-
ing feature statistics of training samples from different do-
mains to generate new feature statistics that do not exist in the
training data. By doing so, MixStyle simulates domain shifts at
the feature level, enabling the model to learn more generalized
representations. Motivated by this, in this work, we introduce
a speaker-generalization module to prevent speaker bias in
text embedding, mitigating the language-speaker entanglement
problem in cross-lingual TTS.

III. MODEL ARCHITECTURE

CrossSpeech++ is built upon FastPitch [7], a non-
autoregressive TTS model whose encoder and decoder are
based on multiple feed-forward transformer blocks. It takes
a text sequence x ∈ RL as input and produces a mel-
spectrogram y ∈ RT×80, where L and T denote the lengths
of the text sequence and the output mel-spectrogram, respec-
tively. We adopt the online duration aligner [41], which allows
ground truth durations to be obtained without external sources.
This online aligner not only enables efficient training but also,
more importantly, removes the dependency on pre-computed

aligners for each language, which is highly beneficial for
extending languages in cross-lingual TTS [41]. In addition,
we replace the transformer with conformer blocks [42] due to
their capability to model rich features in a parameter-efficient
way. To support multi-lingual and multi-speaker settings, we
adopt trainable lookup tables for language and speaker.

An intuitive way to avoid language-speaker entanglement
in cross-lingual TTS is to divide the generation pipeline
into language-dependent and speaker-dependent parts [43],
[44]. As illustrated in Fig. 2, CrossSpeech++ breaks the
speech generation pipeline into LDG and SDG, which model
the language-dependent and speaker-dependent representa-
tions, respectively. Each generator includes multiple conformer
blocks and other key components to obtain disentangled rep-
resentations, which are described in the following sections.

IV. LANGUAGE-DEPENDENT GENERATOR

In order to produce language-dependent representations, we
specifically design the LDG to include MDSLN. Additionally,
to learn prosodic variations that are dependent only on lin-
guistic information (e.g., pronunciation and intonation), we
introduce the LDV adaptor and the linguistic adaptor. These
collectively contribute to improving the quality of synthesized
cross-lingual speech.

A. Speaker Generalization

The key to high-quality cross-lingual speech synthesis is to
produce text features that are not biased toward any specific
speaker. To achieve this, we propose MDSLN, which is an
extended module of DSLN [45]. DSLN adaptively modulates
hidden features based on speaker statistics, rather than simply
conditioning the speaker embeddings through summation or
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Fig. 3. Batch-wise shuffle operation. es is the speaker embeddings and ẽs
denotes the shuffled speaker embeddings.

concatenation. Given hidden representations h and speaker
embeddings es, the speaker-conditioned representations are
derived as follows:

DSLN(h, es) = W(es) ∗ LN(h) + b(es), (1)

where ∗ denotes 1D convolution, and LN refers to layer
normalization. The normalized hidden feature space is then
shifted according to speaker embedding statistics, the filter
weight W and bias b, which are predicted by a single linear
layer using es as input.

Intuitively, the model can learn speaker-generalizable text
features when the text features are continuously adapted by
a random speaker during training. This allows the model to
selectively capture essential text-related attributes, apart from
speaker-related information. The adaptation is achieved by
conditioning the text representation with random speaker infor-
mation. Inspired by recent works [40], [44], [46], we introduce
MDSLN to continuously refine the text sequence with random
speaker information by mixing speaker distributions in the
training data, which can be formulated as follows:

MDSLN(h, es) = Wmix(es) ∗ LN(h) + bmix(es), (2)

where Wmix and bmix represent filter weight and bias for
a randomly mixed speaker distribution. The mixed speaker
statistics can be calculated as follows:

Wmix(es) = γW(es) + (1− γ)W(ẽs), (3)

bmix(es) = γb(es) + (1− γ)b(ẽs), (4)

where ẽs is acquired by randomly shuffling es along the
batch dimension (see Fig. 3), and γ is sampled from a
Beta distribution: γ ∼ Beta(α, α) (we set α = 2 in our
experiments). We substitute the LN at the end of the Language-
dependent (LD) conformer encoder block with MDSLN.

B. Language-dependent Variance Adaptor

Although it is crucial to model rich speech variations to
synthesize expressive speech, predicting these variations in
a cross-lingual scenario is challenging due to the combi-
nations of languages and speakers that are unseen during
training [47], [48]. To address this issue, we introduce the
LDV adaptor, which models text-driven speech variations,
a common attribute across multiple speakers. This adaptor
predicts binary pitch and energy variations, indicating whether
these values rise or fall [11]. The LDV adaptor consists of
three components: a duration predictor, an LD pitch predictor,
and an LD energy predictor, all sharing the same architecture.

Pitch and energy values are embedded using a single 1D con-
volutional layer and are then added to the speaker-generalized
text features. During training, we use the target values, while
during inference, we rely on the predicted values. The target
duration value is obtained through an internal aligner [41], and
targets for the LD pitch and energy predictors will be detailed
in the following paragraphs.

1) Pitch: To obtain the target value for the LD pitch
predictor, we first extract the ground truth pitch value for every
frame using the pYIN algorithm [49]. Since pitch is inher-
ently speaker-dependent, we refer to the ground truth pitch
sequence as the speaker-dependent pitch sequence, denoted as
p(s) ∈ RT . We average p(s) across each input text token using
the ground truth duration, and convert the averaged sequence
(denoted as p̄(s) ∈ RL) into a binary sequence. This results
in the language-dependent (speaker-independent) target pitch
sequence p(l) ∈ RL. The conversion to a binary sequence is
defined as follows:

p
(l)
i =

{
1, if p̄

(s)
i−1 < p̄

(s)
i ,

0, otherwise,
(5)

where p̄
(s)
i denotes the ith value of p̄(s), and p

(l)
i represents

the ith value of p(l) for i ∈ {1, 2, 3, . . . , L}. Using p(l) as
the target, the LD pitch predictor is optimized with a binary
cross-entropy loss:

LLDP = −
L∑

i=1

[
p
(l)
i logp̂(l)i + (1− p

(l)
i )log(1− p̂

(l)
i )

]
, (6)

where p̂
(l)
i denotes the ith predicted language-dependent pitch.

2) Energy: We extract the speaker-dependent energy, e(s),
by taking an average from a target mel-spectrogram along the
frequency axis [50]. Similar to pitch, we average e(s) ∈ RT

over every text token and compute the language-dependent
energy e(l) ∈ RL by transforming the averaged sequence into
a binary sequence. The Language-dependent Energy (LDE)
predictor is also trained through binary cross-entropy loss
between the predicted and target LD energy sequence:

LLDE = −
L∑

i=1

[
e
(l)
i logê(l)i + (1− e

(l)
i )log(1− ê

(l)
i )

]
, (7)

where e(l)i and ê
(l)
i represent the ith the target and the predicted

language-dependent energy value, respectively.
The enriched hidden sequence is upsampled according to

the token durations and then fed to the Language-dependent
(LD) conformer decoder. Note that the duration predictor in
CrossSpeech++ learns general duration information because
it takes speaker-generalized representation as an input. As
proven in the recent study [37], this leads to predicting token
duration independently from speaker identity and stabilizes the
duration prediction in cross-lingual TTS.

C. Linguistic Adaptor

Text-dependent speech variations likely encompass a variety
of complex characteristics, motivating us to construct a linguis-
tic adaptor that further enriches text-related acoustic attributes
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Fig. 4. A pipeline for extracting the target linguistic features from waveform.
To eliminate speaker-related features, the perturbed waveform is input to
a multilingual wav2vec2.0. The following linguistic encoder extracts solely
linguistic features, which are fed into a text predictor.

beyond LD pitch and energy. The linguistic adaptor shares
the same teacher-forcing strategy as the LDV adaptor but it
has a distinct target features deliberately designed to contain
elaborate linguistic features independent of speaker-specific
characteristics. The linguistic adaptor contains linguistic pre-
dictor that directly estimate the target linguistic features from
the output of the LD decoder, and it is trained with L1 loss:

LL = ||l− l̂||1, (8)

where l and l̂ refer to the target and predicted linguistic
features, respectively.

As illustrated in Fig. 4, we extract the target linguistic
features by leveraging self-supervised speech representations.
Previous studies have shown that representations from the SSL
speech models contain comprehensive information, with each
layer exhibiting different aspects of speech [51], [52]. Based
on empirical observations, we decide to utilize the last hidden
feature of MMS [53], a wav2vec2.0 model [54] pre-trained
on over 500k hours of speech across 1,400 languages. We
also employ information perturbation techniques [50] that can
remove speaker-dependent information in the waveform, such
as formants, pitch, and frequency response, through a series of
formant shifting, pitch randomization, and random frequency
shaping functions. Subsequently, the linguistic encoder ex-
tracts the target linguistic features, which are fed into an auxil-
iary text predictor to strengthen linguistic characteristics [24].
Both the linguistic encoder and the text predictor are optimized
with connectionist temporal classification (CTC) loss [55]
between the text sequence x and the linguistic features z:
LCTC = −logP (x|z) [24]. Note that the parameters of the
pre-trained MMS are not updated.

V. SPEAKER-DEPENDENT GENERATOR

To colorize speaker-specific attributes constituting one half
of natural human speech, we construct an SDG that includes an
SD encoder, an SDV adaptor, and an SD decoder. SD encoder
effectively aligns the language-dependent representations to
the speaker identity with the help of DSLN [45]. We stack
conformer blocks for the SD encoder and replace the LN at the
end of each conformer block with DSLN [45]. The following
SDV adapter consists of the speaker-dependent pitch (SDP)
and energy (SDE) predictor. This adds speaker-specific speech
variations such as formants and stress patterns. We extract

TABLE I
DATASET DESCRIPTION.

Languages Source #speakers Hours

en-US LJSpeech [56] 1 12.228
VCTK [57] 3 0.581

zh-CN Databaker [58] 1 10.080
AIShell3 [59] 9 3.614

ja-JP CSS10 [60] 1 6.563
JSUT [61] 1 7.458

ko-KR koMulti [62] 6 14.095

the speaker-dependent pitch p(s) and energy e(s) sequence as
described in Sec. IV-B, and optimize the SD predictors using
L1 loss:

LSDP = ||p(s) − p̂(s)||1, (9)

LSDE = ||e(s) − ê(s)||1, (10)

where p̂(s) and ê(s) denotes the predicted speaker-dependent
pitch and energy sequences, respectively. The speaker-
dependent sequences are fed to the 1D convolutional layer
and summed to the speaker-specific hidden feature. The SD
decoder then produces speaker-dependent acoustic represen-
tation. The output mel spectrogram is generated by adding
language-dependent and speaker-dependent features after they
are projected through a single convolutional layer.

To sum up, the overall training objectives (Lall) are given:

Lall =Lmel + Lalign + λdurLdur

+ λLDPLLDP + λLDELLDE + λLLL

+ λCTCLCTC + λSDPLSDP + λSDELSDE,

(11)

where Lmel means L1 loss between the target and the predicted
mel-spectrogram, Lalign denotes the alignment loss for the
online aligner as described in [41]. Ldur is L1 loss between
the target and the predicted duration. In our experiments, we
fix λdur = λLDP = λLDE = λL = λCTC = λSDP = λSDE = 0.1.

VI. EXPERIMENTAL SETTINGS

A. Dataset

We conduct experiments on the mixture of the monolingual
dataset in four languages: English (en-US), Chinese (zh-CN),
Japanese (ja-JP), and Korean (ko-KR) as detailed in Table I.
Since all the datasets have different environments, we resample
all the audio to 16kHz and convert the corresponding tran-
scripts to IPA symbols [63]. In our experiments, the dataset is
split into 80%-10%-10% for training, validation, and test sets
across all speakers. 80 bins mel-spectrogram is transformed
with a window size of 1280, a hop size of 320, and Fourier
transform size of 1280.

B. Model Configuration

All the encoders and decoders in our method are based on
conformer blocks. Except for the LD encoder, which consists
of 4 conformer blocks, the other modules are composed of
2 conformer blocks each. Each conformer block is designed
with a hidden dimension of 192 and a single attention head.
We also set a hidden dimension of 192 for the language
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and speaker lookup tables, where each language and speaker
ID is converted into a 192-dimensional embedding vector.
The variance predictors share the same architecture, which
consists of two 1D convolutional layers with ReLU activation,
each followed by layer normalization and a dropout layer,
as in FastSpeech2 [28]. Following recent work on voice
conversion [64], the linguistic encoder includes a Convolu-
tional Gated Linear Unit (ConvGLU) [65], and we add layer
normalization at the end of the linguistic encoder to stabilize
the linguistic feature prediction pipeline. We utilize pre-trained
MMS from Hugging Face2, and our text predictor consists
of 2 conformer blocks followed by a single projection layer.
The total number of learnable parameters is 12M.

C. Training Details

CrossSpeech++ is trained for 500 epochs on 8 NVIDIA
A6000 GPUs with a batch size of 128. We use the AdamW
optimizer with β1 = 0.8, β2 = 0.99, ϵ = 10−9, and an initial
learning rate of 2 × 10−4, decayed by 0.999875 per epoch.
Gradients are accumulated and the optimizer steps after every
two batches to enhance training efficiency.

D. Baseline Methods

CrossSpeech++ is compared against recent cross-lingual
TTS systems. All the systems are trained and evaluated with
the same configurations, including training and test datasets.
The output mel-spectrogram is converted to an audible wave-
form by pre-trained Fre-GAN [66] vocoder.

• FastPitch (FP) [7] is the backbone network of
CrossSpeech++. We follow the official implementation
of FastPitch3 with slight modifications. We incorporate
trainable lookup tables to support multiple speakers and
languages, and adopt the online duration aligner [41].

• FP + DAT [13] adopts domain adversarial training (DAT)
based on FastPitch. Given that the DAT speaker classifier
proposed by Zhou et al. [40] can be easily applied to other
systems, we integrated this DAT classifier into FastPitch.

• FP + DAT + Lreg [37] leverages speaker regularization
loss (Lreg) along with the DAT classifier as in SANE-
TTS [37]. Since the speaker regularization loss stabilizes
the duration prediction process in non-autoregressive TTS
systems, it can be applied to any non-autoregressive
system that adopts a duration predictor. Therefore, we
choose FastPitch as the backbone network.

• CrossSpeech [38] is our previous work and serves as a
strong and comparable baseline to our current model.
While it shares similarities with CrossSpeech++
in dividing the speech generation process into
speaker-independent and speaker-dependent modules,
CrossSpeech++ introduces more speech variation (i.e.,
LD and SD energy). More importantly, it incorporates
SSL-based linguistic information which is the key to
improving speech quality.

2https://huggingface.co/facebook/mms-300m
3https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/

SpeechSynthesis/FastPitch

E. Evaluation Metrics

We assessed the effectiveness of our method using extensive
evaluation metrics, including both subjective and objective
measures. We used 50 random speech clips for subjective
evaluation (i.e., MOS and SMOS), and 300 samples for
objective evaluations (UTMOS, SECS, and CER).

• MOS stands for Mean Opinion Score. To evaluate the
naturalness of audio, we performed a MOS test in which
30 domain-expert subjects were asked to rate the natural-
ness on a scale from 1 to 5. Speech naturalness includes
audio clarity and pronunciation accuracy.

• SMOS denotes Similarity Mean Opinion Score. Similar
to MOS, 30 raters assess the speaker similarity of speech
pairs. The raters were instructed to focus solely on the
voice similarity to the target speaker; high scores are
given if the voices are similar, even if the quality of
speech is degraded.

• UTMOS [67] is an automatic MOS prediction neural
network. While subjective evaluation is regarded as the
gold standard in assessing speech naturalness [68], it
requires high costs in terms of both time and money. As a
remedy to this, UTMOS has been widely used because of
its effectiveness in estimating subjective scores [69]–[71].

• SECS denotes Speaker Embedding Cosine Similarity. It
measures how similar the speaker characteristics of the
generated speech are to those of the target speech. We
extracted speaker representation using Resemblyzer4

from generated and the actual speech, then computed the
cosine simliarity between them.

• CER stands for Character Error Rate, which measures
the intelligibility of speech by comparing the predicted
text of speech to the target text sequence. We obtained
the transcriptions of speech using a publicly available
automatic speech recognition (ASR) system [72] that is
pre-trained on 680k hours of speech from 99 languages.

VII. RESULTS AND ANALYSIS

A. Quality Comparison

To show the effectiveness of CrossSpeech++, we compare
the generation performance of CrossSpeech++ against that
of recent cross-lingual TTS models on both cross-lingual
and intra-lingual scenarios. For cross-lingual evaluation, we
randomly sample four representative speakers per language,
while all speaker IDs are used for intra-lingual evaluation.
The results are listed in Table II. Above all, CrossSpeech++
achieves significant improvements in cross-lingual speech. In
cross-lingual TTS, CrossSpeech++ obtains the best scroes in
MOS as well as UTMOS and CER, which underscores the
ability of CrossSpeech++ to generate highly natural speech.
While CrossSpeech++ shows a slight decrease in similarity
scores (SMOS and SECS) compared to our previous work,
CrossSpeech, we posit that this difference is attributable to
our method generating more precise pronunciation and accent
driven by text inputs, which leads to a perceptible shift
in speaker similarity to the target speaker using a different

4https://github.com/resemble-ai/Resemblyzer
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TABLE II
EVALUATION RESULTS. MOS AND SMOS ARE PRESENTED WITH 95% CONFIDENCE INTERVAL. UTMOS IS AN AUTOMATIC PREDICTION MODEL FOR

MOS. SECS DENOTES SPEAKER EMBEDDING COSINE SIMILARITY AND CER REFERS TO CHARACTER ERROR RATE. LOWER IS BETTER FOR CER, AND
HIGHER IS BETTER FOR THE OTHER METRICS. THE BOLD VALUE REPRESENTS THE BEST SCORE FOR EACH METRIC.

Method
Cross-lingual Intra-lingual

MOS↑ SMOS↑ UTMOS↑ SECS↑ CER↓ MOS↑ SMOS↑ UTMOS↑ SECS↑ CER↓

Ground Truth − − − − − 4.55± 0.06 4.93± 0.05 4.052 0.793 8.57
Vocoded − − − − − 4.38± 0.09 4.78± 0.06 3.833 0.791 8.88

FP [7] 3.88± 0.07 3.23± 0.09 3.474 0.711 14.47 3.65± 0.09 3.92± 0.10 3.074 0.773 11.11

FP+DAT [13] 3.55± 0.09 3.66± 0.09 3.468 0.738 14.84 3.49± 0.10 3.88± 0.11 3.086 0.776 10.73
FP+DAT+Lreg [37] 3.71± 0.11 3.65± 0.08 3.490 0.756 14.26 3.43± 0.11 3.82± 0.09 3.087 0.776 10.65
CrossSpeech [38] 3.93± 0.08 3.87± 0.07 3.279 0.776 16.15 3.56± 0.12 3.86± 0.09 3.039 0.781 11.26

CrossSpeech++ 4.06± 0.09 3.82± 0.10 3.791 0.761 13.35 3.85± 0.09 3.94± 0.08 3.343 0.777 10.14

TABLE III
EVALUATION ON DIFFERENT CONFIGURATIONS OF LINGUISTIC FEATURE

EXTRACTION. # REPRESENTS THE LAYER INDEX OF MMS [53].

#
Cross-lingual Intra-lingual

UTMOS↑ SECS↑ CER↓ UTMOS↑ SECS↑ CER↓

1 3.672 0.710 12.45 3.274 0.774 9.42
6 3.796 0.743 12.99 3.343 0.774 10.13

12 3.799 0.748 13.10 3.369 0.776 9.68
18 3.800 0.747 13.01 3.365 0.777 9.77
24 3.829 0.756 13.58 3.369 0.778 10.10

language. CrossSpeech++ also demonstrates superior quality
compared to the baselines in intra-lingual cases, confirming
that our method is beneficial not only in cross-lingual settings
but also in intra-lingual scenarios.

B. Analysis on Linguistic Features

To determine the optimal extraction pipeline for the tar-
get linguistic features, we evaluate the output quality of
CrossSpeech++ trained with linguistic features from different
layers of MMS [53]. Specifically, we compare the linguistic
features extracted from the 1st, 6th, 12th, 18th, and 24th layers.
Table III presents the evaluation results on our validation
sets, indicating trade-offs across different layers. When we
inject hidden features from the earlier layers into LDG,
it brings about language-speaker entanglement, resulting in
the text embeddings learning pronunciation along with the
corresponding native speaker information. While this leads
to more intelligible speech (measured by CER), it results in
degraded naturalness (measured by UTMOS) and speaker sim-
ilarity (measured by SECS), which is not a desired outcome.
However, when we utilize the hidden features from the latter
layers, it contributes more to language-speaker disentangle-
ment, leading to improved naturalness and speaker similarity.
Therefore, we use the features from the 24th layer because it
provides improved naturalness and speaker similarity with a
slight reduction in intelligibility.

C. Ablation Study

We investigate the effect of each CrossSpeech++ component
by conducting an ablation study on its quality. We measure UT-
MOS, SECS, and CER in both cross-lingual and intra-lingual

TABLE IV
RESULTS FOR THE ABLATION STUDY. LA AND TP REFER TO LINGUISTIC

ADAPTOR AND TEXT PREDICTOR, RESPECTIVELY.

Method
Cross-lingual Intra-lingual

UTMOS↑ SECS↑ CER↓ UTMOS↑ SECS↑ CER↓

CrossSpeech++ 3.791 0.761 13.35 3.434 0.777 10.14

w/o MDSLN 3.767 0.752 13.39 3.422 0.762 11.32
w/o LDV 3.763 0.750 13.43 3.346 0.770 10.14
w/o LA 3.443 0.772 13.54 3.115 0.783 10.53
w/o Perturb 3.611 0.706 15.58 3.343 0.768 10.43
w/o TP 3.782 0.751 13.42 3.311 0.772 10.13
w/o SDV 3.695 0.753 14.02 3.227 0.765 10.93

cases. As indicated in Table IV, each component contributes to
enhancing the quality of CrossSpeech++. Replacing MDSLN
with the original LN in the LD encoder (w/o MDSLN) results
in relatively small yet consistent degradation across all metrics
in both cross-lingual and intra-lingual cases. This indicates
that MDSLN helps to learn speaker-generalizable features
and facilitates the training of the subsequent LDV adaptor.
Moreover, the Linguistic Adaptor (LA) significantly improves
naturalness and intelligibility in both cross-lingual and intra-
lingual cases. While it slightly reduces speaker similarity, we
presume this is due to residual speaker information entangled
within the text representations. Removing audio perturbation
hinders the effectiveness of LA in disentangling language and
speaker information, resulting in noticeable degradation across
all metrics. The absence of the Text Predictor (TP) when
extracting target linguistic features also leads to inaccurate
pronunciation. The importance of modeling LD and SD speech
variations (w/o LDV and w/o SDV ) is validated by the de-
graded quality observed when these variations are overlooked.

D. Qualitative Evaluation

To intuitively demonstrate speaker generalization capability
of LDG and speaker transferability of SDG, we visualize the
LD and SD features. Fig. 5 illustrates the LD and SD features
derived from text inputs in two different languages (en-US and
ko-KR) and spoken by four different speakers (EN, KR, CN,
and JP). As evident from the figure, the LD feature does not
contain speaker-specific characteristics (e.g., harmonics) and
changes only according to the input text regardless of speaker
information. On the contrary, the SD feature includes speaker-
specific characteristics and varies with different speakers.
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Spk.
en-US ko-KR

LD feature SD feature LD feature SD feature

EN 

KR 

CN

JP

Fig. 5. Visualization of language-dependent (LD) and speaker-dependent (SD) features. We visualize LD and SD features based on two different languages
(en-Us and ko-KR) and spoken by four different speakers, i.e., English (EN), Korean (KR), Chinese (CN), and Japaneses (JP). Note that the LD feature
remains invariant, while the SD feature varies across different speakers.

(a) (b)

Fig. 6. t-SNE plots of speaker feature space of (a) LD features and (b) the
output mel-spectrogram. Each color represents different speakers.

This indicates that CrossSpeech++ successfully disentangles
language and speaker-related information into acoustic repre-
sentations, each dependent on the corresponding information.

In addition, Fig. 6 depicts the speaker feature space of
(a) LD features and (b) the out mel-spectrogram by using t-
Stochastic Neighbor embedding (t-SNE) [73]. In Fig. 6(a), we
observe that the embeddings are not clustered by speakers but
rather randomly spread out. This indicates that the language-
dependent representations are not biased to speaker-related
information but solely contain text-related variations. On the
other hand, the embeddings are well-clustered by speakers in
Fig. 6(b), demonstrating CrossSpeech++ can successfully learn
and transfer speaker-dependent characteristics through SDG.

TABLE V
QUALITY COMPARISON WITH ZERO-SHOT CROSS-LINGUAL MODELS.

Method UTMOS↑ SECS↑ CER↓

VALL-E X [74] 3.243 0.710 34.76
XTTS-v2 [75] 3.450 0.763 17.80

CrossSpeech++ 3.863 0.767 21.22

E. Comparison with Zero-shot Models

We further evaluate our method in comparison to recent
zero-shot cross-lingual models: VALL-E X [74] and XTTS-
v2 [75]. Using the pre-trained checkpoints from the popular
reproduction of VALL-E X5 and the official implementation of
XTTS-v26, we generate audio samples in a zero-shot manner
and compute UTMOS, SECS, and CER. Different from the
experiments in Table II where we evaluate using all languages,
we focus on English, Chinese, and Japanese sentences in this
evaluation, as VALL-E X does not support Korean synthesis.
The evaluation results are presented in Table V. Although
CrossSpeech++ exhibits a slightly higher CER than XTTS-v2,
our method consistently outperforms all zero-shot baselines in
terms of UTMOS and SECS. This demonstrates that our ap-
proach generates more natural-sounding speech with accurate
speaker characteristics.

VIII. BROADER IMPACT

By leveraging CrossSpeech++, we can achieve various pos-
itive societal impacts, such as creating educational resources

5https://github.com/Plachtaa/VALL-E-X
6https://github.com/coqui-ai/TTS
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for foreign language learning and developing conversational
AI agents with multilingual capabilities, all while preserving a
consistent speaker identity. However, it is crucial to recognize
the potential threats that could arise from the misuse of this
technology. These threats include the creation of hate speech
and voice phishing attacks. Additionally, the ability to convert
text to speech in multiple languages poses a risk of spreading
misinformation globally in one’s own voice, thus amplifying
its reach and impact. These considerations highlight the ne-
cessity of responsible use and the establishment of ethical
guidelines in the deployment of cross-lingual TTS systems.

IX. CONCLUSION AND DISCUSSION

In this paper, we propose CrossSpeech++, which achieves
high-fidelity cross-lingual speech synthesis with significantly
improved speech naturalness. We observed remain language-
speaker disentanglement in previous cross-lingual TTS sys-
tems and addressed the issue by separately modeling language
and speaker representations in the output acoustic features.
Experimental results demonstrated that CrossSpeech++ out-
performed standard methods both in cross-lingual and intra-
lingual scenarios. Moreover, we verified the effectiveness of
each CrossSpeech component by conducting an ablation study.

CrossSpeech++ has demonstrated remarkable capabilities
in synthesizing both cross- and intra-lingual speech com-
pared to previous works. However, despite its advancements,
CrossSpeech++ requires a substantial corpus of text-to-speech
pairs to produce speech in a target language, making it less
applicable to low-resource languages. Therefore, our future
research will focus on developing effective strategies to deploy
cross-lingual TTS systems, even in low-resource language.
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