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ABSTRACT This paper introduces SpoofCeleb, a dataset designed for Speech Deepfake Detection (SDD)
and Spoofing-robust Automatic Speaker Verification (SASV), utilizing source data from real-world condi-
tions and spoofing attacks generated by Text-To-Speech (TTS) systems also trained on the same real-world
data. Robust recognition systems require speech data recorded in varied acoustic environments with different
levels of noise to be trained. However, current datasets typically include clean, high-quality recordings
(bona fide data) due to the requirements for TTS training; studio-quality or well-recorded read speech is
typically necessary to train TTS models. Current SDD datasets also have limited usefulness for training
SASV models due to insufficient speaker diversity. SpoofCeleb leverages a fully automated pipeline we
developed that processes the VoxCeleb1 dataset, transforming it into a suitable form for TTS training.
We subsequently train 23 contemporary TTS systems. SpoofCeleb comprises over 2.5 million utterances
from 1,251 unique speakers, collected under natural, real-world conditions. The dataset includes carefully
partitioned training, validation, and evaluation sets with well-controlled experimental protocols. We present
the baseline results for both SDD and SASV tasks. All data, protocols, and baselines are publicly available
at https://jungjee.github.io/spoofceleb.

INDEX TERMS In the wild, speech deepfake detection, spoofing-robust automatic speaker verification.

I. INTRODUCTION
The quality of synthetic speech has improved rapidly, driven
by advancements in technologies such as flow matching, neu-
ral codecs, and speech-language modeling [1], [2], [3]. These
innovations have significantly enhanced the naturalness and
intelligibility of generated speech. The increasing availability

of open sources and APIs for Text-To-Speech (TTS) systems
has made high-quality synthetic speech more accessible to the
general public [4], [5].

Although originally developed for positive applications,
this technology is increasingly being exploited for malicious
purposes [6], [7]. Synthetic speech generated with harmful
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intent, often referred to as spoofing, is being used to deceive
individuals in scenarios such as voice phishing (or vishing).
Spoofing also undermines the reliability of speech biometric
systems, including Automatic Speaker Verification (ASV),
many of which remain highly vulnerable to such attacks
[8], [9].

In response to these challenges, several datasets have been
developed to advance research in Speech Deepfake Detection
(SDD) [10], [11], [12]. For robust recognition systems, it is
essential to have training data that cover a wide range of real-
world acoustic environments and speaker diversity. However,
speech generation systems, such as TTS and Voice Conversion
(VC), typically require studio-quality or clean, read speech
for training. Therefore, current datasets tend to feature clean,
monotonic bona fide speech, with spoofed samples also being
clean, as they are synthesized using TTS and VC systems
trained on such data. The emerging task of Spoofing-robust
Automatic Speaker Verification (SASV) [13] lacks dedicated
datasets. Many SDD datasets also suffer from limited speaker
diversity, which hinders research on SASV systems that re-
quire training with data from hundreds or even thousands of
speakers.

To this end, we introduce SpoofCeleb, a dataset built upon
VoxCeleb1 [14], a widely used ASV dataset consisting of
the voices of 1,251 celebrities recorded under real-world
conditions. We also develop a fully automated pipeline that
processes VoxCeleb1 to produce in-the-wild bona fide speech
samples that can be used for training TTS systems.1 From
the two available TTS training sets in TITW, we use TITW-
Easy as the source dataset to generate 23 spoofing attacks.
SpoofCeleb is the first dataset explicitly designed for both
SDD and SASV, where the bona fide speech is real-world,
noisy speech. The dataset is divided into three subsets for
training, validation, and evaluation, accompanied by evalu-
ation protocols. Baseline systems trained on SpoofCeleb’s
training set are also presented, demonstrating SpoofCeleb’s
effectiveness in and potential for future research in SDD and
SASV.

II. RELATED WORKS
Datasets for SDD and the generation-recognition trade-off:
To safeguard the authenticity of speech, several datasets have
been published to support research in SDD [9], [10], [11],
[12], [18], [21], [23], [26]. One of the most critical decisions
when creating these datasets is the selection of the source data
(i.e., bona fide speech). This decision involves a trade-off,
which we refer to as the “generation-recognition trade-off.”

For both SDD and SASV on the recognition side, incor-
porating data with diverse noise, reverberation, and varied
domains is essential for training robust models. It is well
known that recognition models trained solely on clean speech

1The development of this pipeline is extensive, and the resulting bona fide
speech data can serve other purposes, such as advancing research on TTS
systems trained on noisy, in-the-wild data. We detail this aspect in a separate
work, referring to the dataset as TTS In The Wild (TITW) [15].

often struggle to effectively generalize to noisy environments
during inference [18]. While data augmentation techniques
can help mitigate this issue [31], the most effective solution
is to use training data drawn from a wide range of real-world
sources.

Conversely, traditional TTS training requires a carefully
curated and recorded dataset. Sentence prompts must be
selected to ensure comprehensive phonetic coverage [32],
and recordings are typically made by voice professionals
in clean environments, ideally in a single anechoic studio.
These recordings are of high studio quality and carefully ar-
ticulated but are not scalable. For instance, the well-known
CMU Arctic database includes recordings from fewer than
10 voice professionals, each reading approximately 1,000
speech prompts [32]. Modern TTS systems, however, often
require significantly more training data. Instead of relying
on these small-scale, TTS-specific databases, contemporary
models frequently use audiobook datasets (e.g., MLS [33]),
which, while not studio-grade, consist of relatively clean au-
diobook recordings made by numerous readers in their homes
or offices.

Current SDD datasets tend to lean towards the generation
side of the generation-recognition trade-off. They use source
datasets that consist of either studio-quality or high-quality
speech, facilitating the training of TTS and VC systems and
the successful generation of spoofed speech samples. How-
ever, both the bona fide and spoofed speech in these datasets
are exceedingly clean, making them far from real-world, noisy
speech data.

SpoofCeleb is the first dataset to use real-world, noisy,
and reverberant data originating from TITW, which originates
from VoxCeleb1, as the source for training and synthesiz-
ing spoofed speech. We tackle the generation-recognition
trade-off by using our carefully curated, fully automated pre-
processing pipeline that enables TTS models to be trained on
data that more closely mirrors real-world conditions.

Datasets for SASV: As SASV is an emerging task extending
the scope of ASV systems with spoofing robustness, there is a
lack of dedicated datasets for SASV. Earlier studies on SASV
have relied on SDD datasets [34], [35]. However, current SDD
datasets do not prioritize speaker diversity and balance, both
of which are critical for SASV. Most datasets also lack a
sufficient number of speakers.

To the best of our knowledge, VSASV [30], a parallel
data collection effort to SpoofCeleb, is the only attempt at
addressing these limitations by creating a dataset specifi-
cally for SASV. SpoofCeleb complements VSASV while also
having several distinctions. While VSASV includes three
spoofing attacks, SpoofCeleb contains 23. Although VSASV
uses in-the-wild bona fide data, its spoofed data are derived
from high-quality sources due to the challenges in developing
TTS systems with in-the-wild data. In contrast, SpoofCeleb
adopts TITW which originates from VoxCeleb1, a widely-
used ASV dataset recorded in the wild, as its bona fide
source. Additionally, VSASV includes approximately 300 k
samples, whereas SpoofCeleb offers over 2.5 M samples.
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TABLE 1. List of Datasets in Speech Deepfake Detection (SDD) and
Spoofing-Robust Automatic Speaker Verification (SASV)

Table 1 compares SpoofCeleb with other SDD and SASV
datasets.

III. SOURCE DATASET: TITW
Our goal is to create a dataset for SDD and SASV using
VoxCeleb1 as the source so that both bona fide and spoofed
samples would reflect real-world scenarios. However, Vox-
Celeb1 is not suitable for direct use in TTS training.2 The
challenges with VoxCeleb1 are multifaceted. For example,
the speech samples often (i) contain overly emotional ex-
pressions, (ii) include extended non-speech segments, or (iii)
have excessively long durations. To address these issues, our
developed fully automated pipeline processes VoxCeleb1 into
the TITW dataset, which can be used for TTS training.

Fig. 1(a) illustrates the automated processing pipeline that
was used to generate the TITW dataset. The pipeline begins
by transcribing and obtaining word-level alignment using the
WhisperX toolkit [36]. This toolkit transcribes the speech
using the pre-trained Whisper Large v2 Automatic Speech
Recognition (ASR) model [37], while word-level segmen-
tation is derived from another phoneme-based ASR model.
For a small subset of randomly selected samples, we also
transcribe the text using the OWSMv3.1 model [38] and cross-
check the accuracy of the transcriptions. We then segment the
utterances from VoxCeleb1 whenever a silence longer than
500 ms is detected, resulting in multiple segments from a
single utterance. Next, we apply a series of heuristic-driven
rules – developed through several iterations of TTS training –

2Our preliminary attempts to train TTS systems using the raw VoxCeleb1
data without further processing were unsuccessful.

FIGURE 1. Overall process pipeline of SpoofCeleb dataset collection. (a):
our proposed fully automated pipeline transcribes, segments, filters,
enhances, and again filters with DNSMOS to derive TITW-Easy [15] from
VoxCeleb1 [14], which is adequate for TTS training. (b): 23 different TTS
systems are trained using TITW-Easy and spoof speech samples are
generated. All generated spoofing samples are combined with TITW-Easy
to constitute SpoofCeleb.

to filter the data. We discarded any samples that (i) were non-
English, (ii) were shorter than 1 s or longer than 8 seconds,
(iii) contained one or more words with a duration exceeding
500 ms, or (iv) had empty transcriptions.

After completing the initial processing steps (referred to
as TITW-Hard in [15]), we conducted multiple iterations of
TTS training trials. Despite these efforts, training remained
extremely challenging for most TTS systems, with only a
few recent models showing success. The generated speech
was still insufficient to deceive pre-trained ASV systems, as
measured using the SPooF Equal Error Rate (SPF-EER) met-
ric [13].3 To address this, we applied speech enhancement
using a pre-trained model named DEMUCS and excluded
samples with DNSMOS “BAK” (background noisy qual-
ity) scores below 3.0. The final number of speech segments
(TITW-Easy in [15]) is approximately 248 k, which serves
as the bona fide portion of the SpoofCeleb dataset. For full
details on the preparation of TITW from VoxCeleb1, refer
to [15]. Nonetheless, we note that this choice of enhancing the
bona fide speech may confuse the training of detection models
because inevitable artifacts can be added with the enhance-
ment process. Yet, we employ TITW-Easy as the bona fide,
not TITW-Hard, because of the aforementioned practicality.

IV. SPOOFCELEB
Fig. 1(b) illustrates the composition of SpoofCeleb. The
TITW dataset serves as the foundation for training multi-
ple TTS systems. These systems are then used to synthe-
size spoofed speech samples, which are combined with the

3The SPF-EER is calculated by assessing an ASV system’s ability to
correctly accept target trials while rejecting spoofed non-target trials. Bona
fide non-target trials are excluded from this protocol, as the focus is solely on
evaluating the ASV system’s spoofing robustness.
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bona fide speech samples from TITW to form the complete
SpoofCeleb. To achieve this, we use 4 acoustic models, 6
waveform models (i.e., vocoders), and 5 End-to-End (E2E)
models. Unless mentioned otherwise, all models were trained
from scratch using the TITW-Easy data. SpoofCeleb does
not include voice conversion systems, as TTS systems pose
more immediate and prevalent security threats with publicly
available APIs. Incorporating voice conversion systems would
also require more complex configurations, such as defining
source and target speaker pairs. Hence we leave this part for
future work.

A. ACOUSTIC MODELS
Training acoustic models using in-the-wild data was one of
the most challenging aspects of SpoofCeleb creation. We ap-
plied several criteria to evaluate the success of the training,
including (but not limited to) speech intelligibility, measured
by the Word Error Rate (WER), noisiness, assessed using
DNSMOS, and speaker identity, evaluated using SPF-EER.
Among these metrics, SPF-EER was prioritized as the primary
measure, since the most critical factor in a spoofing attack is
whether it can deceive an ASV system. The final models that
were successfully trained include TransformerTTS, GradTTS,
Matcha-TTS, and BVAE-TTS.

TransformerTTS [39] is an autoregressive TTS model
that generates mel-spectrograms from textual input using a
transformer-based architecture. The model uses a sequence
of transformer encoder and decoder blocks with multi-head
self-attention. We trained TransformerTTS using the ESPnet
toolkit [40].4

GradTTS [41] is a TTS model with a score-based decoder
that generates mel-spectrograms by gradually transforming
noise predicted by the text encoder. During inference, we set
the denoise step to 50 to ensure high-quality speech gener-
ation. We used the official implementation and followed the
default settings.5

Matcha-TTS [42] is an efficient non-autoregressive TTS
model based on an optimal-transport conditional flow match-
ing decoder [1]. Unlike score-based models, it constructs a
more direct sampling trajectory, enabling high-quality gen-
eration with fewer sampling steps. We used the official
implementation.6

BVAE-TTS [43] uses a Bidirectional-inference Variational
AutoEncoder (BVAE) to model the hierarchical relation-
ships between text and speech. By leveraging the atten-
tion maps generated using BVAE-TTS, the model jointly
trains a duration predictor, enabling robust and efficient
non-autoregressive speech generation. We used the official
implementation.7

4[Online]. Available: https://github.com/ESPnet/ESPnet.
5[Online]. Available: https://github.com/huawei-noah/Speech-Backbones.
6[Online]. Available: https://github.com/shivammehta25/Matcha-TTS.
7[Online]. Available: https://github.com/LEEYOONHYUNG/BVAE-TTS.

B. WAVEFORM MODELS
The training of waveform models was comparatively straight-
forward. We employed a mix of both classic and recent
waveform models, including DiffWave, HiFiGAN, Parallel
WaveGAN, Neural source-filter model with HiFi-GAN dis-
criminators (NSF-HiFiGAN), BigVGAN, and WaveGlows.

DiffWave [44] is a diffusion probabilistic model designed
for both conditional and unconditional waveform generation.
We used the official implementation.8

HiFiGAN [45] is a widely known GAN-based wave-
form model that uses multiple transposed convolution
blocks to progressively upsample and transform input mel-
spectrograms into speech waveforms. The generator is opti-
mized using multiple discriminator losses, a feature matching
loss, and L1 loss between the generated and ground truth mel-
spectrograms. We used the HiFiGAN V1 architecture from the
official implementation.9

Parallel WaveGAN [46] is a lightweight vocoder model.
It uses a non-autoregressive WaveNet [47] architecture com-
bined with multi-resolution Short-Time Fourier Transform
(STFT) loss and waveform adversarial loss. We used the offi-
cial implementation.10

NSF HiFiGAN [48] is similar to Parallel WaveGAN but
explicitly incorporates a sine-based source signal as input to
the generator. It also includes a noise branch that transforms
random noise into an aperiodic signal. This aperiodic signal is
combined with the generator’s periodic output for harmonic-
plus-noise speech waveform generation. We used the official
implementation.11

BigVGAN [49] is a universal GAN-based vocoder that gen-
eralizes effectively across diverse scenarios, including unseen
speakers, languages, and recording environments. By using
periodic activation functions and anti-aliased representations,
BigVGAN introduces a beneficial inductive bias for speech
synthesis. We used the official implementation12

WaveGlow [50] generates waveforms through a series of
neural network-based invertible affine transformations condi-
tioned on input mel-spectrograms. During training, the model
parameters are optimized to whiten the ground-truth wave-
form as much as possible. We used the same toolkit as with
NSF HiFiGAN.

C. E2E AND SPEECH-LANGUAGE MODELS WITH NEURAL
CODECS
While two-stage TTS pipelines have proven effective for mod-
eling speech from text, they often suffer from poor quality
due to the mismatch between acoustic and waveform models.
Waveform models are trained on predefined features but must

8[Online]. Available: https://github.com/lmnt-com/diffwave.
9[Online]. Available: https://github.com/jik876/hifi-gan.
10[Online]. Available: https://github.com/kan-bayashi/ParallelWaveGAN.
11[Online]. Available: https://github.com/nii-yamagishilab/project-NN-

Pytorch-scripts.
12[Online]. Available: https://github.com/NVIDIA/BigVGAN.

VOLUME 6, 2025 71

https://github.com/ESPnet/ESPnet
https://github.com/huawei-noah/Speech-Backbones
https://github.com/shivammehta25/Matcha-TTS
https://github.com/LEEYOONHYUNG/BVAE-TTS
https://github.com/lmnt-com/diffwave
https://github.com/jik876/hifi-gan
https://github.com/kan-bayashi/ParallelWaveGAN
https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts
https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts
https://github.com/NVIDIA/BigVGAN


JUNG ET AL.: SPOOFCELEB: SPEECH DEEPFAKE DETECTION AND SASV IN THE WILD

process the outputs generated by acoustic models during in-
ference, leading to potential inconsistencies. To address this
issue, several E2E models have been proposed, and we have
successfully trained multiple E2E models using the TITW
dataset.

Speech-Language Models (SpeechLMs) represent an
emerging category of TTS models. Similar to language mod-
els in natural language processing, they are trained to predict
tokens, in this case, tokens of neural codecs, which are then
decoded via a neural codec system’s decoder. Unlike acoustic
models, which can be paired with any compatible waveform
model, SpeechLMs rely on a predetermined decoder based on
the neural codec used during training, limiting their ability to
function with multiple decoders.

VALL-E, Multi-Scale Transformer, and Delay: VALL-E [2]
predicts the first token of each frame using an autoregressive
module, followed by a non-autoregressive prediction for the
remaining tokens. Multi-Scale Transformer [51] uses a global
Transformer for inter-frame modeling and a local Transformer
for intra-frame modeling, maintaining full autoregression
without approximation. In Delay [52], the multi-stream token
sequences are processed using a “delay” interleave pattern,
which enables approximate autoregressive prediction for both
inter- and intra-frame modeling, achieving high efficiency.
We used implementations of the three models in the ESPnet
toolkit.4

MQTTS [3] is designed to synthesize speech using real-
world data from YouTube and podcasts. To address mis-
alignments common in mel-spectrogram-based autoregressive
models, it uses a multi-codebook vector quantization ap-
proach to improve both speech intelligibility and diversity.
MQTTS aligns closely with the goals of this work, as we
aim to develop a dataset that spans real-world data for both
bona fide and spoofed speech. We used the official implemen-
tation.13

VITS [53] is an E2E TTS model that combines a conditional
VAE with stochastic duration prediction to generate wave-
forms from textual input. The model uses normalizing flow to
learn latent representations from speech, while the stochastic
duration predictor captures diverse speech prosody from text.
For waveform generation, adversarial loss is used to produce
high-quality waveforms from the latent representations. We
trained VITS using the ESPnet toolkit.4

D. ATTACK GENERATION, PARTITIONING, AND PROTOCOLS
Diverse combinations of acoustic and waveform models,
alongside E2E and SpeechLM models, result in a total of
23 spoofing attacks. This approach is inspired by previous
research, which demonstrated that both acoustic and wave-
form models impact the perceptual quality of synthesized
speech [54]. Table 3 provides a detailed overview of the 23
spoofing attacks included in SpoofCeleb.

Data partitioning for SpoofCeleb requires a more sophisti-
cated approach compared to existing ASV or SDD datasets.

13[Online]. Available: https://github.com/b04901014/MQTTS.

TABLE 2. Number of Speech Files and Protocols

TABLE 3. Spoofing Attacks of SpoofCeleb

An SDD dataset only requires the binary bona fide or spoof
label, while an ASV dataset focuses on speaker identities.
SpoofCeleb, as a dataset for both SDD and SASV, must ac-
count for both bona fide/spoof labels and speaker identities
simultaneously.

Speakers: For the speaker partitioning, we divide the 1,251
speakers in the bona fide data into three sets: 1,171 for train-
ing, 40 for validation, and 40 for evaluation. This ensures that
there are no overlapping speakers between any of the sets.

Spoofing attacks: For spoofing attacks, we divide the bona
fide data (A00) and the 23 spoofing attacks (A01–A23) as fol-
lows. In the training set, 10 attacks (A01 to A10) are combined
with the bona fide data. Among these attacks, six are derived
from a combination of acoustic and waveform models, while
the remaining four originate from E2E and SpeechLM TTS
systems.

In the validation set, there are 6 attacks: A06, A07, and A11
to A14, combined with the bona fide data (A00). Attacks A06
and A07 represent known attacks from unknown speakers.
Attacks A11 and A12 involve the same architecture as other
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FIGURE 2. Illustration of how SpoofCeleb is partitioned.

attacks but differ in model training details. Specifically, A11
is fully trained from scratch using the TITW dataset, while
in A02, the decoder was pre-trained. Similarly, A12 is fully
trained from scratch on TITW, whereas A04 was pre-trained
on LibriSpeechGigaSpeech [55] and the English subset of
Multilingual LibriSpeech [33], then fine-tuned on TITW. At-
tacks A13 and A14 serve as partially known attacks. In A13,
the acoustic model (GradTTS) is known, but the waveform
model (NSF HiFiGAN) is unknown. Similarly, in A14, the
acoustic model (Matcha-TTS) is known, but the waveform
model (HiFiGAN) is unknown.

In the evaluation set, there are 9 attacks, A15 to A23.
Attacks A15 and A16 involve known architectures but differ
in configurations. For A15, the decoder is initialized with a
pre-trained model, and the speaker embeddings are taken from
target utterances, simulating a scenario in which an attacker
has access to the target speaker’s utterance pool. A16 was
pre-trained using the same data composition as A04. Attacks
A17 and A18 represent partially known attacks where the
acoustic models are known, but the waveform models are not.
Finally, A19 to A23 are fully unknown attacks, meaning no
part of their models was encountered during training.

Fig. 2 illustrates the three partitions of SpoofCeleb and
Table 2 provides the statistics of each partition. In total,
SpoofCeleb contains over 2.5 M speech samples.

Protocols: SpoofCeleb includes protocols for validating
and evaluating developed SDD and SASV models. The SDD
protocols for validation and evaluation specify the speech
samples to be assessed, while the SASV protocols list pairs of
trials with an enrollment utterance and a test utterance. Table 2
provides details on the number of utterances for the SDD
protocols and the number of trials for the SASV protocols.

V. BASELINES
A. SDD
Two E2E SDD models, RawNet2 [56] and AASIST [57], are
used as the baselines. The RawNet2 model for SDD is an
adapted version of RawNet2 originally designed for ASV. It
features an input layer that processes raw waveforms directly
and uses convolution-based residual blocks. Frame-level rep-
resentations are aggregated, projected, then passed through a
binary classification head.

AASIST is one of the most widely used SDD models in
recent literature. Like RawNet2, it includes an input layer that
processes raw waveforms and uses convolution-based resid-
ual blocks. However, unlike RawNet2, AASIST incorporates
graph attention network-based modules designed to capture
spectral and temporal spoofing artifacts separately. It then uses
heterogeneous stacking of graph attention layers to jointly
model spectral and temporal information concurrently.

B. SASV
We employ three models as SASV baselines, all of which
use the SKA-TDNN architecture [58]. These models are used
to assess the impact of different training data and scenarios.
SKA-TDNN is a convolution-based model with residual con-
nections, incorporating dedicated modules and architectural
design choices for multi-scale processing. It is an advanced
version of the ECAPA-TDNN architecture [59].

Among the three SASV baselines, the first model (“Con-
ventional ASV”) is trained as a conventional ASV system us-
ing the VoxCeleb1&2 datasets, without considering spoof ro-
bustness. We use a pre-trained model from ESPnet-SPK [60].
The second model (“SASV trained on out-of-domain data”) is
trained as an SASV model but uses out-of-domain data from
the ASVspoof2019 logical access dataset [9]. We use a pre-
trained model from [61]. The third model (“SASV trained on
SpoofCeleb”) is trained as an SASV model using the training
set from SpoofCeleb.

VI. METRICS
A diverse set of metrics is employed to evaluate the
SpoofCeleb dataset, as well as the SDD and SASV models.
To assess the quality of the speech samples and the strength
of the attacks, we use SPF-EER, Mean Cepstral Distortion
(MCD), UTMOS [62], DNSMOS [63], and Word Error Rate
(WER), with the WER evaluated using the OpenAI Whisper-
Large model [64]. SPF-EER measures speaker characteristics,
UTMOS and DNSMOS are objective approximations of per-
ceived quality and noisiness of synthesized speech, and WER
measures intelligibility. For evaluating the performances of
the SDD baselines, we use Equal Error Rate (EER) and the
min Detection Cost Function (minDCF) [65]. To assess the
SASV baselines, we adopt the recently proposed architecture-
agnostic Detection Cost Function (min a-DCF) [66], along
with Speaker Verification EER (SV-EER) and SPooF EER
(SPF-EER). Table 5 outlines the trial types involved in the
SASV metrics; a-DCF includes all three trial types, while
SV-EER and SPF-EER cover only a subset.

VII. RESULTS
A. SPOOFING ATTACKS
Table 4 presents various metrics to assess the speech quality of
the 23 synthesized spoofing attacks and how effectively they
threaten ASV systems. SPF-EER is the most critical metric,
as it measures the extent to which the generated attacks can
deceive existing ASV systems. We evaluated SPF-EER using
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TABLE 4. Quality and Strength of 23 Spoofing Attacks Included in SpoofCeleb

TABLE 5. Three Metrics Used for Gauging Performances of SASV Baselines

a pre-trained RawNet3 model [68], which is publicly available
through ESPnet-SPK [60].

In the top row, the speech quality evaluations for A00 (bona
fide speech) are provided as reference values. The results
confirm that the spoofing attacks in SpoofCeleb are highly
threatening, with most attacks achieving an SPF-EER over
20%. The majority of attacks exhibit relatively minor degra-
dation in UTMOS and DNSMOS, indicating the high quality
of the synthesized speech samples. Intelligibility, measured
using the WER, shows that for most attacks, there is no more
than a 10% deterioration in performance.

B. SDD
Table 6 presents the results of four baseline SDD sys-
tems. We evaluate two SDD models, RawNet2 and AASIST,

TABLE 6. SDD Baseline Performances

trained on two different datasets. The models trained on the
ASVspoof2019 logical access dataset are used to assess the
zero-shot performance on validation and evaluation SDD pro-
tocols of SpoofCeleb. The other two models demonstrate the
performance of systems trained on in-domain SpoofCeleb
training data.

The zero-shot results in the top two rows indicate that ex-
isting SDD models not trained on in-the-wild data struggle to
distinguish between spoofed samples and bona fide speech.
As shown in rows 3 and 4, there is a significant perfor-
mance improvement when these models are trained using the
SpoofCeleb training set, highlighting the importance of train-
ing SDD models on in-the-wild data. However, the RawNet2’s
result in row 3 is unexpected, as it shows better performance
on the evaluation set than on the validation set, while the
evaluation set includes totally unknown attacks. To further
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TABLE 7. Attack-Wise Performance of RawNet2 SDD Baseline on Validation and Evaluation Sets

TABLE 8. SASV Baseline Performances. SKA-TDNN [58] Model Architecture is Employed

investigate this, we conduct an analysis of the attack-wise
results.

Table 7 presents the attack-wise performance of the
RawNet2 baseline SDD model trained on the SpoofCeleb
training set. Attacks A06 and A07 are classified as known
attacks. Attacks A11 to A18 are partially unknown; in these
cases, either the acoustic or waveform model is known, or the
architecture is familiar but trained with a different configura-
tion. Attacks A19 to A23 represent entirely unknown attacks.

We found that the inferior performance on attack A11 con-
tributed to the validation set results being worse than those
on the evaluation set. Interestingly, when comparing A11 and
A15, attack A15 is more difficult to distinguish for a con-
ventional ASV system that does not account for spoofing,
with SPF-EER values of 47.78% for A11 and 65.21% for
A15. Both attacks originate from MQTTS; however, A11 was
trained entirely from scratch, while A15 utilized a pre-trained
decoder. Once an SASV system is trained on the SpoofCeleb
training data, A11 becomes more challenging to detect. A
deeper investigation into the reasons behind this phenomenon
is left for future work.

The comparative analysis in Tables 4 and 7 reveals a
discrepancy between the rankings of attacks’ SPF-EER on
the pre-trained ASV system trained with VoxCeleb and the
rankings of attacks’ EER on the SDD system trained with
SpoofCeleb. This divergence may be attributed to the differ-
ences in training data, whether the models were trained on
SpoofCeleb. The discrepancy could be a result of the funda-
mental differences in the tasks themselves, as SDD and SASV
systems are optimized for distinct objectives.

C. SASV
Table 8 presents the performances of three SASV baselines
on the SpoofCeleb validation and evaluation protocols. Min
a-DCF assesses the overall performance, while SV-EER and
SPF-EER evaluate the systems’ ability to reject bona fide and
spoof non-target trials, respectively.

As expected, a conventional ASV system that does not
account for spoof attacks, shown in the first row, fails to reject
synthesized speech samples, with an a-DCF exceeding 0.49

on both the validation and evaluation sets. However, it per-
forms well at rejecting bona fide non-target trials. The results
in the second row indicate an improvement in a-DCF for the
validation set, but even worse performance on the evaluation
set. Both SV-EER and SPF-EER remain very high, indicating
that the system trained for SASV with out-of-domain data
struggles to reject both types of non-target trials. The a-DCF
of 0.9998 also signifies that the model fails to find an operat-
ing point where it can reject both types of non-target trials.
Finally, when trained on the SpoofCeleb training data, the
a-DCF on the evaluation set drops to its lowest value (0.2902),
and both SV-EER and SPF-EER are more balanced compared
with row 1, where the system was only capable of rejecting
bona fide non-target trials.

VIII. CONCLUSION AND REMARKS
This paper introduces SpoofCeleb, a dataset for SDD and
SASV based on in-the-wild data. To create a dataset that
incorporates real-world conditions, we used a fully automated
pipeline to process the VoxCeleb1 dataset, making it possible
to use it for training TTS systems. We further trained 23
TTS systems, partitioning TITW and the TTS systems into
SpoofCeleb, which includes training, validation, and evalua-
tion sets. Protocols were defined to train and test both SDD
and SASV models, and baseline systems for SDD and SASV
were established, trained, and evaluated.

While there are numerous SDD datasets, many are limited
in scale or speaker diversity, which has hindered research
on single SASV models. We hope SpoofCeleb will serve as
the first dataset with enough data to effectively train single
SASV systems. Yet, SpoofCeleb has its limitations. In the
experiments, some spoofing attacks are shown to be less chal-
lenging, as the wild nature of the TITW data complicates the
training of robust TTS systems. Future work will focus on
advancing TTS training techniques that can better leverage
this challenging in-the-wild data.
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