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Traditional Text-to-Speech (TTS) systems rely on studio-
quality speech recorded in controlled settings. Recently, an ef-
fort known as “noisy-TTS training” has emerged, aiming to uti-
lize in-the-wild data. However, the lack of dedicated datasets
has been a significant limitation. We introduce the TTS In
the Wild (TITW) dataset, which is publicly available1, created
through a fully automated pipeline applied to the VoxCeleb1
dataset. It comprises two training sets: TITW-Hard, derived
from the transcription, segmentation, and selection of raw Vox-
Celeb1 data, and TITW-Easy, which incorporates additional en-
hancement and data selection based on DNSMOS. State-of-the-
art TTS models achieve over 3.0 UTMOS score with TITW-
Easy, while TITW-Hard remains difficult showing UTMOS be-
low 2.8. Beyond TTS, TITW’s unique design, leveraging a au-
tomatic speaker recognition dataset, strengthens ethical efforts
to counteract malicious use of TTS models by supporting tasks
such as speech deepfake detection.
Index Terms: text-to-speech synthesis, in the wild, dataset

1. Introduction
Generative speech technology is evolving rapidly, driven

in part by advances in diffusion models, speech codecs, and
speech-language modeling methodologies [1–5]. Among these
advancements, Text-to-Speech (TTS) systems have made re-
markable progress, with recent models capable of generating
speech that is nearly indistinguishable from human speech in
terms of intelligibility and naturalness. Notably, while tradi-
tional TTS systems required minutes of studio-recorded target
speaker data, modern systems can now operate effectively with
just a few seconds of such data [6–8].

In terms of TTS training, however, studio-quality data re-
mains the de facto standard, despite its limitations. Studio
recordings, while superior in audio quality, lack diversity, vari-
ability, and scalability. In-the-wild speech data, on the other
hand, offers exposure to real-world variability, greater speaker
diversity, and nearly unlimited scalability. These benefits are
particularly valuable for underrepresented languages, as studio-
based data is often limited, hindering the democratization of
speech technology. Being able to utilize publicly available
sources like YouTube for TTS training could revolutionize the
field, enabling the curation of target language data from acces-
sible, diverse, and abundant resources.

Efforts to train TTS systems with lower-quality, in-the-
wild data – often termed “noisy-TTS training” – have shown
promise. While earlier works have reported that TTS models
cannot be trained with low-quality data [9, 10], more recent

1https://huggingface.co/datasets/jungjee/titw
†Currently at Apple.

Figure 1: Fully automated Text-To-Speech Synthesis In The Wild
(TITW) processing pipeline. The pipeline incorporates tran-
scription, segmentation, data selection, enhancement, and fil-
tering based on DNSMOS. The TITW dataset comprises two
editions: TITW-easy, which can be used to successfully train
latest TTS systems, and TITW-hard, where the quality is too
low to train TTS systems with current technology but aims to
serve the training of more advanced future TTS systems.

studies such as DenoiSpeech [11] and MQTTS [12] demon-
strate that competitive performance can be achieved using non-
studio-quality data, such as podcasts and YouTube audio. The
ASVspoof 5 challenge [13] further supports this shift, demon-
strating the potential of real-world sources like audiobooks for
high-quality synthetic speech. However, the field of noisy-
TTS training lacks standardized datasets, protocols, and bench-
marks, with most studies relying on private data or artificially
noised studio recordings. This gap hinders progress and repro-
ducibility in the field.

To this end, we introduce the Text-To-Speech Synthesis In
The Wild (TITW) database, which is publicly available. It is
constructed using the VoxCeleb1 database [14], a large collec-
tion of YouTube speech data, and processed through an auto-
mated pipeline involving transcription, segmentation, and en-
hancement. This pipeline eliminates the need for manual pro-
cessing, making the dataset scalable and accessible. TITW in-
cludes two training sets: TITW-Hard, comprising 189 hours of
speech derived from raw VoxCeleb1 data with minimal process-
ing, and TITW-Easy, a refined subset of 173 hours enhanced
using DNSMOS-based selection and additional processing. We
also propose standardized evaluation protocols and benchmarks
to facilitate reproducible research. Our experiments demon-
strate that four contemporary TTS models can be successfully
trained using TITW, showcasing its practical utility.

The selection of VoxCeleb1 as a source dataset, originally
developed for automatic speaker recognition, offers unique and
novel benefits to TITW. Recent TTS systems, capable of pro-
ducing speech nearly indistinguishable from human voices,
have raised concerns about malicious use and its potential to
damage society [15]. By training TTS models on TITW, the
resulting synthetic speech can be paired with human speech



in TITW to support research in speech deepfake detection and
spoofing-robust automatic speaker verification [16]. This ap-
plication of TITW not only advances TTS research but also
contributes to developing robust countermeasures against the
misuse of synthetic voices. This dual benefit stems from the
dataset’s guarantee that all speech samples feature only single-
speaker audio. Consequently, our work underscores a broader
impact, fostering both innovation and ethical considerations in
the field of generative speech technology.

2. Related works
Numerous databases have been used for training TTS

models. Legacy databases such as CMU ARCTIC [17] and
VCTK [18] were carefully designed and curated. They contain
phonetically-balanced utterances, all recorded in highly con-
trolled acoustic environments. Due to the high cost of record-
ing, these and similar databases typically include data from a
single speaker or a small number of speakers. The speech data
they contain is generally neutral in terms of emotions and ex-
pressiveness. These databases were widely used for training
speaker-dependent and multiple-speaker legacy TTS systems
(e.g., unit-selection [19] and HMM-based [20]).

The revolution in deep-learning-based TTS systems called
for larger-scale datasets. Datasets like LJSpeech [21], Multi-
lingual Librispeech [22] and LibriTTS [23], which are sourced
from LibriVox audiobooks, are not recorded in studio-quality
environments. LJSpeech contains twenty-four hours of audio-
book recordings but from a single speaker while the other two
feature a greater number of speakers. They have been widely
used to train deep-learning-based TTS systems [24, 25]. Their
adoption marks a shift towards using training data collected in
less controlled conditions. Even so, this data still falls short of
capturing the diversity in speaker style and acoustic conditions
found in truly “in-the-wild” scenarios; the signal-to-noise ratio
remains high and utterances are generally well-enunciated.2

The TITW database introduce in this paper aims to sup-
port research in overcoming data constraints, often referred to
as noisy-TTS training. We envisage TTS systems that can be
trained successfully using speech data collected in uncontrolled
conditions. We see two avenues for such research. The first,
most challenging direction involves the use of training data col-
lected in the wild without manual human intervention, relying
solely on automatic transcriptions, segmentation, and data se-
lection based on heuristics. The second direction involves the
use of a subset of data after applying additional speech enhance-
ment and data selection based on speech quality. TITW con-
tains in-the-wild recordings of interviews, podcasts, and more,
all posted to social media, making it, to our best knowledge, one
of the first of its kind.3

3. TITW
For several reasons, we selected VoxCeleb1 [14], which

contains speech from 1, 251 speakers, as the source data for

2See Librivox documentation and guidelines for recording an audio-
book https://librivox.org/pages/about-recording.

3We recognize EMILIA [26] as the most similar, parallel work.
However, the goals of the two works differ. EMEILIA focuses on de-
veloping a data processing pipeline that yields high-quality data from
in-the-wild data. Therefore, it strives to provide the highest achievable
quality. TITW is designed to foster research in the training of TTS sys-
tems using more noisy and real-world data. Hence we provide not only
TITW-Easy which can be used for the training of contemporary TTS
systems, but also TITW-Hard to challenge the development of future
systems.

Figure 2: An example of the transcription and segmentation
in TITW automatic pipeline. A randomly selected utterance
from VoxCeleb1 goes through our transcription and segmenta-
tion pipeline, deriving two segments. A segment in the middle is
deleted because it is a non-speech segment over 500ms.

TITW. Firstly, VoxCeleb1 is itself sourced from the wild,
specifically, YouTube, spanning diverse acoustic environments.
Secondly, as a dataset for automatic speaker recognition, each
utterance is from a single speaker. Lastly, by selecting Vox-
Celeb1 as a source dataset, TTS systems trained on TITW
can contribute to future research in speech deepfake detection
and spoofing-robust automatic speaker verification, especially
requiring TTS researchers’ attention to safeguard the rapidly
advancing speech generation technology from malicious us-
age. SpoofCeleb [27] exemplifies this effort, where synthesized
(spoofed) utterances generated by 23 TTS systems trained on
TITW-Easy are used to create a dataset for speech deepfake de-
tection and spoofing-robust automatic speaker verification.
3.1. Transcription and segmentation

We first transcribe and segment the utterances using pre-
trained models and empirically derived heuristics, ensuring the
process is fully automatic without human intervention. Figure 2
displays an example of a VoxCeleb1 utterance, transcribed at
the word-level and then segmented into two.
Transcription. Since TTS training typically requires paired
speech and text data, we generated transcriptions for the en-
tire VoxCeleb1 corpus. For the sake of scalability and repro-
ducibility in future projects in various languages, we generated
transcriptions automatically using pretrained automatic speech
recognition (ASR) models. We used the WhisperX [28] toolkit
to generate transcriptions with word-level timestamps. Whis-
perX incorporates the OpenAI Whisper Large v2 model [29]
for transcription and another phoneme-based ASR model for
word-level alignment. We additionally employed the OSWMv3
speech foundation model [30] and transcribed the data in par-
allel. The transcriptions from the OWSMv3 model served to
verify transcription accuracy.
Segmentation. We divide each sample into isolated segments
using Voice Activity Detection (VAD) embedded in Whis-
perX [28]. Practically, whenever a non-speech periods exceed
500ms, we trim the silence and split it into two segments. This
segmentation rule was developed through empirical, iterative
investigations. Initial attempts to train TTS models with un-
segmented data failed, revealing that excessively long silences
within training samples were a significant issue. This procedure
results in approximately 280k transcribed speech segments.
3.2. Data selection

In order to maximize the “wildness” of the dataset, our ini-
tial investigations did not apply any data selection mechanism



Table 1: Text-To-Speech Synthesis In The Wild (TITW) statistics.
Both sets involve 1, 251 speakers.

# samples Avg dur (s) Tot dur (h) Avg # words

TITW-Easy 282, 606 2.42 189 10.84
TITW-Hard 248, 024 2.51 173 10.55

Table 2: Speech quality of the TITW-Easy and -Hard sets. WER
is calculated using OWSMv3 [30]. TITW remains significantly
more challenging than VCTK or even EMILIA with a DNSMOS
of 3.20 and 3.26.

UTMOS DNSMOS WER (%)

TITW-Hard 3.00 2.38 9.30
TITW-Easy 3.32 2.78 9.10

when composing the training set for TTS. However, we em-
pirically found that attempts to train TTS models were unsuc-
cessful due to the data being excessively noisy, including issues
like mistranscription. Consequently, we developed four heuris-
tically defined rules for data selection. These heuristics emerged
from iterative efforts to train TTS models with filtered data. If
any of the following conditions are met, the data is removed and
discarded from further consideration:
• The language is not from target language, in this case, En-

glish. To simplify TTS training, we use Whisper’s language
recognition capability to detect and remove utterances in lan-
guages other than English. Multilingual extensions are left
for future work.

• The segment duration is shorter than 1 second or longer than
8 seconds. Empirical evidence suggests that using utterances
with such a semi-consistent duration benefits training stabil-
ity.

• The per-word duration is longer than 500 ms. The typical
speaking rate is in the order of 2 words per second. Out-
liers often correspond to emotional or pathological speech,
or long intervals of non-speech, all of which can destabilize
TTS training and are hence removed.

• The automatic transcription is empty. Such cases indicate
a non-speech segment or ASR failure. In either case, they
cannot be used for TTS training and are removed.4

The application of transcription, segmentation and data se-
lection results in the “TITW-Hard” database. Since the raw data
is collected from videos posted to social media, utterances in
the TITW-Hard database still contain background noise or low-
quality speech. Preliminary experiments have revealed that the
training of TTS models with TITW-Hard data is extremely chal-
lenging; most attempts failed to converge even after applying
the aforementioned data selection heuristics.
3.3. Enhancement and DNSMOS-based further data selec-
tion

Given the challenges of training TTS models using the
TITW-Hard database, we created a second, relatively less chal-
lenging dataset named “TITW-Easy.”5 First, we apply a pre-

4Note that despite the application of these data selection heuristics,
TITW retains a higher level of variability and naturalness compared to
most existing corpora.

5We believe that future TTS models and training schematics will
enable successful training with TITW-Hard. Nonetheless, we introduce
TITW-Easy, which contemporary state-of-the-art TTS architectures and
training schemes can effectively utilize, as a stepping stone towards re-
search in noisy-TTS training.

Figure 3: Histograms of samples in the TITW-Easy and -Hard
sets using DNSMOS overall score shown in the x-axis. Even
with data selection heuristics discussed in Section 3.2, training
with TITW-Hard remains extremely challenging.

trained speech enhancement model, DEMUCS [31]6 to reduce
additive, background noise.7 We then apply a second round of
data selection, this time to the enhanced data. This is done by
estimating DNSMOS scores [32, 33] for each utterance. Then,
all utterances for which the DNSMOS score is below a thresh-
old of 3.0 are removed. An exception is made for segments
from speakers included in the generation protocol (Section 4).

Figure 3 presents histograms of DNSMOS scores for both
the TITW-Hard and TITW-Easy databases. Is is clearly shown
that most of the low-quality samples with low DNSMOS scores
have been filtered out. Table 1 presents statistics and Table 2
further details the UTMOS, DNSMOS overall, and Word Er-
ror Rate (WER) of TITW-Easy and -Hard providing a compre-
hensive measure of the overall quality and intelligibility. WER
was calculated by comparing TITW’s transcript with OWSMv3.
The low DNSMOS scores confirm that both TITW training sets
retain their challenging nature.

4. Evaluation and benchmarking
Once a TTS model is trained using the TITW database, it

can be evaluated with one of the two protocols for generating
new synthetic speech.
TITW-KSKT (Known Speaker, Known Text) is designed to
generate synthetic speech for speakers and text that are both
present in the TITW-Hard and TITW-Easy training sets. Both
sets of speakers and text are randomly extracted from those used
in the VoxCeleb1-O automatic speaker verification evaluation
protocol. Consequently, the number of speakers here matches
that of the VoxCeleb1-O protocol, at 40. However, due to our

6https://github.com/facebookresearch/denoiser
7The application of denoising does not compromise our objective to

train TTS models with automatically collected data from the wild – the
entire pipeline remains automated, reproducible, and scalable.



Table 3: Speech quality of the segments generated from the baselines on the TITW-KSKT and -KSUT protocols. All models were trained
using the TITW-Easy data. MCD is only applicable for TITW-KSKT where it has the reference samples.

System TITW-KSKT TITW-KSUT
MCD↓ UTMOS↑ DNSMOS↑ WER (%) ↓ MCD↓ UTMOS↑ DNSMOS↑ WER (%) ↓

TransformerTTS-ParallelWaveGAN 11.68 2.06 2.50 24.90 N/A 1.79 2.54 107.90
GradTTS-DiffWave 6.76 2.18 2.39 11.90 N/A 2.30 2.54 54.00
VITS 8.61 2.77 2.74 53.00 N/A 2.78 2.81 120.50
MQTTS 6.99 3.08 2.83 23.30 N/A 3.20 2.94 67.10

Table 4: Comparative results of the identical TTS system being
trained with TITW-Easy and TITW-Hard data. Metrics are re-
ported using the TITW-KSKT protocol. “GTmel” uses ground
truth mel-spectrograms in place of GradTTS to solely measure
vocoder’s performance.

System Train MCD UTMOS DNSMOS WER

GTmel-DiffWave Easy 5.05 2.63 2.68 11.90
GTmel-DiffWave Hard 4.97 2.24 2.30 12.20

GradTTS-DiffWave Easy 6.76 2.18 2.39 11.90
GradTTS-DiffWave Hard 8.23 1.29 1.47 26.20

VITS Easy 8.61 2.77 2.74 53.00
VITS Hard 9.06 2.48 2.69 59.50

data preparation processes outlined in Section 3, the number of
segments has increased from 4, 708 to 9, 113.
TITW-KSUT (Known Speaker, Unknown Text) aims to gen-
erate synthetic speech with text that is unseen in both the TITW-
Hard and TITW-Easy datasets. We employ two text sources
for this: The first is the Rainbow Passage [34], which cov-
ers many English sounds and their combinations. It has been
used widely in other data collection efforts, for example the
VCTK corpus [18]. The second is a set of Semantically Un-
predictable Sentences (SUS) [35] selected from past Blizzard
challenges [36]. In total, there are 200 different text samples
(31 from The Rainbow Passage and 169 from the set of SUS).
With the same set of 40 speakers, the protocol requires the gen-
eration of 8, 000 (= 40× 200) synthetic utterances.

5. Experiments
5.1. Metrics

We adopt four metrics to assess the quality of generated
synthetic speech: (1) Mel Cepstral Distortion [37] (MCD) mea-
sures the spectral similarity between synthesized and natural
speech; (2) UTMOS [38] estimates the overall speech quality;
(3) DNSMOS [33] also estimates the overall quality, including
aspects such as noise reduction; (4) the ASR WER, measured
using the OpenAI Whisper-Large model [39], quantifies the in-
telligibility of speech by measuring transcription errors. We use
all four metrics as different proxies for speech quality. In prac-
tice, we use the VERSA toolkit to compute all four metrics [40].
5.2. TTS training data

To provide reference, we first compared the two TITW
datasets with others commonly used for TTS training. Results
presented in Table 2 indicate that the TITW-Easy dataset sur-
passes the TITW-Hard dataset in terms of quality as intended.
As expected, speech samples in both TITW datasets remain
more challenging than those used typically for TTS training.
DNSMOS scores of TITW-Easy and -Hard are 2.78 and 2.38
while those of VCTK [41], MLS [22], and EMILIA [26] are
3.20, 3.33 and 3.22, respectively.
5.3. Baseline TTS benchmarks

We present the performance of four different TTS sys-
tems, all trained with TITW datasets: (i) TransformerTTS [42]

with ParallelWaveGAN [43]; (ii) GradTTS-DiffWave [44, 45];
(iii) VITS [46]; (iv) MQTTS [12]. The choice of these baseline
models aims to offer a diverse representation of contemporary
TTS technologies. All models were trained with an open-source
recipe for reproducibility with detailed recipes at [27].

Table 3 displays the results for these four TTS models
when trained with the TITW-Easy dataset, evaluated under both
protocols. UTMOS and DNSMOS scores of the synthesized
speech being comparable with those in Table 2 show that it
matches the quality of training data. This indicates that sys-
tems were successfully trained. Yet, they struggle with the in-
herent challenges of the TITW data. The WER significantly
increases in most cases. These baseline performances are fur-
ther challenged by the TITW-KSUT protocol results, where all
performances degrade compared to the TITW-KSKT protocol.

Table 4 compares the performance of models trained on
TITW-Easy and TITW-Hard datasets. Here, we focus on two
systems, GradTTS-DiffWave and VITS, as the other two base-
line systems failed to converge when trained with TITW-Hard.
We also present the result replacing GradTTS with a mel-
spectrogram extracted from the original speech file (i.e., copy
synthesis), which serves as the upper bound for the waveform
model, DiffWave. The results consistently confirm that in all
cases models trained on TITW-Hard produce speech of lower
quality, highlighting the challenging nature of TITW-Hard.

6. Conclusion and remarks
We introduce TITW, a new dataset tailored for training,

evaluation and benchmarking TTS systems using real-world,
in-the-wild speech data. TITW responds to the growing trend
in TTS research toward noisy-TTS training by leveraging un-
controlled environments. Through a fully automated process-
ing pipeline applied to VoxCeleb1—chosen for its diverse,
YouTube-sourced speech—we ensure scalability and broad ac-
cessibility. Our results demonstrate that four state-of-the-art
TTS systems, when trained on TITW-Easy, produce synthetic
speech that closely rivals the quality of the training data. How-
ever, our analysis reveals that only modern deep-learning-based
TTS systems can effectively utilize TITW, while older statis-
tical or early neural network-based systems struggle. Training
is also sensitive to data preparation, due to variability in noise,
accents, or recording conditions, which might explain why the
noisy-TTS training field has emerged only recently.

Beyond technical advancements, TITW’s design carries
significant ethical potential. By using an automatic speaker
verification data as a source, it supports research into speech
deepfake detection, a crucial task for combating the malicious
use of synthetic voices. Consequently, TITW not only enhances
TTS development for underrepresented languages lacking high-
quality datasets but also bolsters safeguards against generative
speech misuse. We hope that making TITW publicly available
will spark further exploration of noisy-TTS training, driving
both innovation and ethical responsibility in synthetic speech
technology.
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