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Abstract

This paper presents InfiniteAudio, a simple yet effective strat-
egy for generating infinite-length audio using diffusion-based
text-to-audio methods. Current approaches face memory con-
straints because the output size increases with input length,
making long duration generation challenging. A common
workaround is to concatenate short audio segments, but this
often leads to inconsistencies due to the lack of shared tem-
poral context. To address this, InfiniteAudio integrates seam-
lessly into existing pipelines without additional training. It in-
troduces two key techniques: FIFO sampling, a first-in, first-out
inference strategy with fixed-size inputs, and curved denoising,
which selectively prioritizes key diffusion steps for efficiency.
Experiments show that InfiniteAudio achieves comparable or
superior performance across all metrics. Audio samples are
available on our project page'.

Index Terms: text-to-audio generation, long generation, diffu-
sion models

1. Introduction

Diffusion models [1, 2] have gained significant attention for
their ability to generate high-quality and diverse outputs,
achieving state-of-the-art performance across various domains,
including image [3, 4, 5, 6], video [7, 8, 9, 10, 11, 12, 13],
and audio [14, 15, 16, 17, 18, 19, 20]. However, their high
computational cost limits their practicality in many applica-
tions. To address this, the Latent Diffusion Model (LDM) [4]
was introduced, utilizing a compressed latent space to improve
efficiency. This approach significantly reduces computational
overhead while preserving high-fidelity outputs, making it more
practical for image and video generation [21, 22, 23].

Beyond image and video generation, LDMs have also be-
come a cornerstone in audio synthesis, particularly in text-
to-audio (TTA) generation [24, 25, 26, 27, 28, 29, 30, 31,
32, 33], which produces realistic audio from textual prompts.
By leveraging LDM’s efficiency and generative power, TTA
models have advanced significantly, incorporating Contrastive
Language-Audio Pretraining (CLAP) [34] to enhance align-
ment between textual descriptions and generated audio [24, 25,
30]. Additionally, large language models (LLMs) have been
integrated into TTA frameworks [27, 28], improving text em-
beddings and enabling more precise interpretation of complex
prompts. This advancement allows TTA models to generate au-
dio that more accurately reflects the intended context.

Despite significant advancements in TTA generation, exist-
ing models based on diffusion approaches face substantial chal-
lenges in generating long-duration audio [24, 26, 31, 35]. The
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core issue arises from the inherent design of diffusion models,
which require the input and output dimensions to remain iden-
tical throughout the process. As a result, generating longer au-
dio necessitates a proportional increase in input size, leading to
memory constraints. A common workaround involves concate-
nating short audio clips produced by existing TTA models to
create longer sequences. However, this approach often suffers
from temporal inconsistencies between segments, resulting in
unnatural and discontinuous audio streams. The lack of shared
temporal context across clips makes it difficult to maintain co-
herence and smooth transitions, further limiting the practical
application of these models for long-form audio generation.

To address these limitations, we propose InfiniteAudio, a
novel inference technique designed to generate long and tem-
porally consistent audio. InfiniteAudio overcomes the memory
constraints of diffusion models by employing a first-in-first-out
(FIFO) mechanism with a fixed input size. This approach incre-
mentally adds noise to parts of the existing model’s predictions,
as illustrated in Fig. 1. Unlike traditional diffusion models that
begin with a uniform noise prior, InfiniteAudio uses priors with
varying noise levels. During inference, the fully denoised por-
tion of the input at the start is discarded, and new latent noise
is appended at the end. This progressive replacement of in-
put data enables InfiniteAudio to generate arbitrarily long audio
sequences while maintaining temporal consistency and a con-
stant memory footprint. By rethinking the inference process,
InfiniteAudio eliminates the reliance on concatenating short au-
dio clips and enables the direct generation of long-duration au-
dio. This approach not only resolves the temporal inconsisten-
cies of existing methods but also offers a solution for generating
coherent, seamless audio over extended durations.

Although FIFO-Diffusion [36], a method developed for
text-to-video (TTV) generation, employs a FIFO generation
mechanism, it still utilizes all diffusion sampling steps during
inference. In contrast, as illustrated in Fig. 1, our approach in-
troduces curved denoising, a novel technique that selectively
prioritizes the most critical diffusion steps identified through
self-attention maps, rather than uniformly applying all steps.
This targeted strategy preserves high-quality generation while
substantially reducing the number of sampling steps, leading to
a more efficient inference process.

Our contributions are summarized as follows. First, we first
propose InfiniteAudio, a method capable of generating long-
duration audio sequences without requiring additional train-
ing. It effectively addresses the memory limitations inherent
in existing diffusion-based TTA models. Second, we introduce
curved denoising, a selective sampling technique that focuses
on critical diffusion steps instead of utilizing all steps, as in
FIFO-Diffusion [36], resulting in improved sampling efficiency.
Lastly, our method can be seamlessly integrated into existing
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Figure 1: Comparison of Existing Methods and InfiniteAudio. Traditional methods apply uniform diffusion timesteps across all input
latents, whereas InfiniteAudio dynamically selects timesteps based on their importance. This adaptive approach enables the generation
of theoretically infinite audio while maintaining a fixed input size, ensuring both efficiency and high-quality synthesis.

text-to-audio generation baselines.

2. Method

2.1. Preliminaries

We provide a comprehensive overview of existing TTA genera-
tion models, which synthesize realistic audio from text prompts
y by representing audio as a 2D mel-spectrogram, capturing
both time and frequency dimensions.

Most TTA models share a common architecture, consist-
ing of audio faudio(-) and text encoders fiezt¢(-), a LDM, an
audio decoder, and a vocoder. The encoders map text and au-
dio inputs into a latent space, where the LDM is trained to
iteratively refine a perturbed latent representation z.. Here,
T ~ U([1, ..., M]) represents the diffusion timestep, control-
ling the level of noise at each step. The LDM progressively
denoises z- from a noisy state back to a clean latent represen-
tation z1. Once z; is obtained, the audio decoder reconstructs
the mel-spectrogram a € RT*F from z; € RE* FXE | where
T and F denote the time and frequency dimensions, C' is the
number of channels, and r is the compression factor. Finally,
the vocoder converts the reconstructed mel-spectrogram into a
waveform, producing the final audio output.

To train the model, Gaussian noise is gradually added to
the latent representation over multiple timesteps. The model
then learns to iteratively remove the noise to reconstruct the
original clean representation. Given a random noise sample
€ ~ N(0,1I), where N'(0,I) denotes a standard normal dis-
tribution and a text condition ¢ = freqt(y) obtained from the
text encoder, the model is trained to minimize the following de-
noising loss function:

2
L=Eser [le—eo(zr,m0)l2], (1
where €4 represents the model’s predicted noise at timestep 7.

2.2. InfiniteAudio

In this section, we introduce InfiniteAudio, a technique for gen-
erating long-duration audio while maintaining a fixed memory
footprint. Our approach leverages pre-trained diffusion-based
TTA models and operates without requiring additional training.

We focus on two key models, AudioLDM and VoiceLDM, and
demonstrate how our inference strategy effectively mitigates
their inherent memory constraints.

2.2.1. FIFO sampling

Generating long audio sequences with diffusion models is chal-
lenging due to their high memory requirements. Recently,
FIFO-Diffusion [36] has addressed this issue in video genera-
tion by utilizing a fixed-size input, where each frame is assigned
a different diffusion timestep. This allows the model to apply
multiple diffusion steps simultaneously across the input frames.
This approach enables the generation of theoretically infinite
video by applying a FIFO sampling strategy.

We adapt this concept to audio generation by initiating the
diffusion process with a fixed-length audio segment, where each

segment is treated similarly to video frames. The input latent

T F . .
z, € RE*FXF is treated as % audio frames, analogous to

video frames. Here, each compressed mel-spectrogram frame

. pa . .
corresponds to z; € R~ wherei € [1, Z]. This structure
enables us to apply multiple diffusion steps across the audio
segment in a similar manner to video generation.

For infinite audio generation, noise is progressively added
to the input audio frames over time, except for the initial frames,
which act as a "buffer zone” and are not perturbed by noise.
Since no additional training occurs in InfiniteAudio, using dif-
ferent diffusion timesteps during inference can introduce a per-
formance gap, as shown in [36]. The buffer zone helps mitigate
this by ensuring that the same timesteps used during training are
applied to the initial frames, reducing inconsistencies.

Beyond the buffer zone, the earlier frames are nearly fully
predicted and the later frames are treated as Gaussian noise. At
the inference stage, the input consists of the buffer frames and
frames with increasing noise levels. As represented in Fig. 1
(b), after each inference step, the first frame following the buffer
zone reaches diffusion timestep 7 = 1 and is then removed. To
maintain the same input size, we insert a new noisy frame at the
last position. By iteratively repeating this process, we generate
N frames in N inference steps, enabling seamless and consis-
tent infinite audio generation through continuous synthesis.
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Figure 2: Attention maps indicating the importance of timesteps
in input sequences. In AudioLDM, the query primarily attends
to the initial portions of the key. In contrast, VoiceLDM exhibits
a stronger correlation with the later key segments to its query,
highlighting a distinct attention distribution pattern.

2.2.2. Curved Denoising with Reduced Sampling Steps

To address memory limitations, InfiniteAudio maintains a con-
stant input size during inference, independent of the output
length. However, using the full set of diffusion timesteps still
requires long input sequences, as more audio segments must
be generated by existing TTA models. To overcome this, In-
finiteAudio prioritizes critical diffusion step regions while re-
ducing emphasis on less important ones. By leveraging de-
terministic denoising [37], existing models can perform infer-
ence efficiently, skipping unnecessary steps while maintaining
high-quality output. Similarly, we eliminate non-essential steps
while preserving sample fidelity, guided by self-attention maps
that highlight key regions for generation.

We partition the diffusion sampling steps into three distinct
regions based on the original timestep distribution: initial, mid-
dle, and final. The initial region corresponds to the early stages
of sampling, where diffusion timesteps are close to 7, while
the final region represents the later stages, where timesteps ap-
proach 1. To identify critical sampling regions during infer-
ence for AudioLDM and VoiceLDM, we analyze self-attention
map scores within the InfiniteAudio framework. In the self-
attention mechanism, attention scores quantify the relevance
between a query and a key vector, determining the influence
of one element on another within the sequence. By examin-
ing self-attention maps in U-Net decoder modules throughout
the diffusion process, we can pinpoint key frames that exert the
most influence on query frames in each model.

As shown in Fig. 2, model behavior varies significantly
based on configuration. In AudioLDM, query sequences are
primarily influenced by initial key sequences, corresponding to
earlier frames with diffusion timesteps close to 1. In contrast,
VoiceLDM exhibits greater sensitivity to later key sequences,
which represent noisier inputs with timesteps approaching M.
Additionally, some initial frames fall within a transitional buffer
zone, so our analysis focuses on regions beyond this buffer for
greater clarity. Based on these observations, we compute the
average attention scores across the initial, middle, and final re-
gions, as illustrated in Fig. 2. We then involve timesteps to re-
gions with higher average attention scores, while skipping less
critical regions using a factor of P. This adaptive timestep al-
location effectively reduces both the number of inference steps
and input size to about 3 seconds. Our curved denoising method
preserves output quality while requiring fewer computations,
enhancing overall efficiency.
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Figure 3: Memory consumption comparison between Audi-
oLDM [24] and our method

3. Experiment
3.1. Experimental Settings
3.1.1. Datasets and Baselines.

To evaluate our method on TTA generation, we utilize 500
audio-text pairs from the 975 test files in the Audiocaps
dataset [38], which is commonly used for assessing TTA mod-
els. Given that our method relies heavily on the performance of
existing baselines, we exclude the bottom 20 percent of audio-
text pairs with the lowest CLAP scores, as predicted by Au-
dioLDM and VoiceLDM. From the remaining pairs, 500 are
randomly selected for evaluation. For comparison, we assess
the performance of InfiniteAudio against two publicly available
TTA models: AudioLDM? and VoiceLDM®.

3.1.2. Evaluation Metrics.

We evaluate audio quality and text-audio alignment using stan-
dard quantitative metrics, including Frechet Distance (FD),
Kullback-Leibler (KL) divergence, and the CLAP score [24, 26,
39]. Frechet Distance and Kullback-Leibler divergence quan-
tify how closely the generated audio matches the ground truth,
where lower values indicate better performance. The CLAP
score measures the relevance of the generated audio to the text
prompt, with higher values being preferable. For subjective
evaluation, we assess overall quality (OVL) and relevance to
the input text (REL). Both metrics were rated on a scale of 1 to
5 by 20 domain experts using 30 speech samples.

3.2. Quantitative Results
3.2.1. Memory Consumptions.

We compare the memory consumption of AudioLDM with our
method. AudioLDM’s memory usage grows with the length
of the generated audio, while our method maintains constant
memory usage regardless of audio length, as shown in Fig. 3.

3.2.2. Evaluation of Curved Denoising.

We evaluate the effectiveness of our curved denoising strategy
in Tab. 1, comparing 10-second audio samples generated us-
ing different sampling methods. Despite requiring no additional
training, our method not only matches the performance of ex-
isting models but also achieves higher scores. By incorporating
self-attention relevance, our approach outperforms methods that
use equally spaced timesteps, such as FIFO-Diffusion [36], as
well as other strategies with the same number of steps.

Zhttps://github.com/haoheliu/AudioLDM
3https://github.com/glory20h/VoiceLDM



Table 1: Quantitative evaluation of TTA. Our method demonstrates performance comparable to both models, even surpassing the
original inference results. Additionally, the use of equally spaced timesteps, as suggested in [36], is considered.

Method | cLApPt FDJ KL, | OVLt RELt
Ground Truth | 05276 NA NA | 411£022  4.03+025
AudioLDM [24] 0.4908  44.6689  2.0805 | 3.03+0.23 3.06-£0.21
w/ Equally spaced timesteps [36] 0.3832 54.7479 24013 2.19+0.21 2.33+0.23
w/ Middle focused timesteps 0.3979 56.7792  2.6077 | 2.06+0.19  2.184+0.20
w/ Last focused timesteps (Ours) 0.4559 43.3788 1.9650 2.63+0.18 2.80+0.21
w/ Initial focused timesteps 0.3110 67.0704  2.9838 2.13+£0.19  2.07£0.20
VoiceLDM [26] 0.4199  51.4019  2.2749 | 2.53+0.24  2.4140.21
w/ Equally spaced timesteps [36] 0.3729 59.1521 2.4477 2.2040.21 2.3340.22
w/ Middle focused timesteps 0.3779 56.7321 2.4622 2.101+0.20 2.4140.22
w/ Last focused timesteps 0.3542 64.8813 2.6227 2.384+0.23 2.2440.21
w/ Initial focused timesteps (Ours) 0.4107 51.5047  2.3498 | 2.38+0.23  2.48+0.21
Strategies to choose inference steps CLAPT Text prompts | Length| Method Spectrograms for generated Audio | CLAPT
20s Ours 0.3888
Interruption 0.1437
(a) Equally spaced timesteps Trumpet o Ours 04364
S
(b) Middle focused timesteps 20s Ours 02995
Interruption -0.0061 A capella Ours 0.2693
. 60s
(c) Last focused timesteps Concat _- 02058
0.3451 - - - -
Figure 5: Comparison of audio generated by AudioLDM [24]
(d) Initial focused timesteps using InfiniteAudio and the concatenation method, demonstrat-

Figure 4: Analysis of different diffusion sampling strategies for
VoiceLDM [26].

Table 2: Comparison of sampling steps in VoiceLDM [26]. In-
finiteAudio achieves superior results for 10 second audio gen-
eration while requiring fewer than 150 sampling steps, demon-
strating enhanced efficiency.

Sampling steps \ CLAPT FDJ KL}

w/ 200 equally spaced steps 0.3923 53.0555  2.3334
w/ 250 equally spaced steps 0.3941 50.5447  2.3937
InfiniteAudio | 0.4107 51.5047  2.3498

3.3. Qualitative Results
3.3.1. Sampling Strategies.

As shown in Fig. 4, unlike other strategies that exhibit interrup-
tions in the generated audio, as seen in the spectrograms, our
method ensures seamless audio generation. This is supported by
both the spectrogram analysis and the improved CLAP score.

3.3.2. Long Generation Quality.

Fig. 5 presents the mel spectrograms of audio generated by Au-
dioLDM [24] at different lengths using InfiniteAudio, compared
to audio produced via the concatenation method. The results
demonstrate that InfiniteAudio generates high-quality, long-
duration audio while preserving stable CLAP scores across
varying lengths. Moreover, it maintains seamless consistency
and natural coherence throughout the entire audio, whereas the
concatenation method results in repetitive patterns and temporal
inconsistencies, as highlighted by the red line.

3.4. Analysis on Sampling Steps and Audio Length

InfiniteAudio is designed to optimize sampling efficiency by
minimizing the number of sampling steps while maintaining
high audio quality. Unlike methods that extend sampling to

ing InfiniteAudio’s superior long-duration generation.

Table 3: Comparison of generated audio lengths between a
fixed 10 second and variable-length in AudioLDM [24].

Generated audio length \ CLAPT FD| KLJ
Fix 0.3207 43.3788 1.9650
Various 0.3259 44.3701 1.9044

200 or 250 steps with equally spaced timesteps, our approach
achieves consistently solid performance across all metrics while
using fewer than 150 steps, as shown in Tab. 2.

InfiniteAudio also excels in generating longer audio se-
quences without sacrificing quality. As shown in Tab. 3, it deliv-
ers results comparable to the fixed 10-second generation across
varying lengths, ranging from 10 to 20 seconds. Notably, the
CLAP score for this experiment is calculated using a different
checkpoint than the one used in other tables, as evaluating vary-
ing audio lengths requires a distinct CLAP model®*.

4. Conclusion

We introduce InfiniteAudio, a novel inference method for gen-
erating infinitely long, consistent audio using pretrained text-
to-audio models. By maintaining a fixed memory footprint,
InfiniteAudio overcomes memory constraints in existing mod-
els and integrates seamlessly with diffusion-based TTA ap-
proaches. Despite relying solely on inference techniques, it
achieves superior performance, opening new possibilities for
continuous and coherent long-form audio generation.
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