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Abstract—We present VoiceDiT, a multi-modal generative model for
producing environment-aware speech and audio from text and visual
prompts. While aligning speech with text is crucial for intelligible
speech, achieving this alignment in noisy conditions remains a
significant and underexplored challenge in the field. To address this,
we present a novel audio generation pipeline named VoiceDiT. This
pipeline includes three key components: (1) the creation of a large-scale
synthetic speech dataset for pre-training and a refined real-world
speech dataset for fine-tuning, (2) the Dual-DiT, a model designed
to efficiently preserve aligned speech information while accurately
reflecting environmental conditions, and (3) a diffusion-based Image-
to-Audio Translator that allows the model to bridge the gap between
audio and image, facilitating the generation of environmental sound
that aligns with the multi-modal prompts. Extensive experimental
results demonstrate that VoiceDiT outperforms previous models on
real-world datasets, showcasing significant improvements in both
audio quality and modality integration. Synthesized samples are
available on our demo page: https://mm.kaist.ac.kr/projects/voicedit/

Index Terms—text-to-speech, text-to-audio, diffusion model.

I. INTRODUCTION

The demand for generating realistic audio, including sound
effects, music, and speech, has rapidly increased across various
industries, such as film and gaming. In response, the fields of Text-
to-Audio (TTA) [1]–[7] and Text-to-Speech (TTS) [8]–[15] have gar-
nered significant attention for their ability to generate natural sounds
and speech from text prompts. Recently, diffusion models, which
have been extensively studied in the field of image generation [16]–
[18], have emerged as a transformative approach to audio synthesis.
Grad-TTS [8] leverages diffusion processes to produce high-quality
speech from text, and AudioLDM [19] enables the versatile
generation of environmental sounds and music from text prompts.

While these models perform well at their respective tasks, audio
generation often requires the simultaneous generation of speech and
environmental sounds. For example, to enhance realism in extended
reality (XR) applications, the character’s voice must blend naturally
with environmental sounds and reflect the acoustics of the space. Re-
cent studies [20]–[23] have explored specialized model architectures
capable of jointly generating both audio and speech. VoiceLDM [20]
conditions the U-Net backbone of AudioLDM with speech transcrip-
tions through cross-attention, enabling the simultaneous generation
of both speech and environmental sounds. It uses the contrastive
language-audio pre-training (CLAP) [24] model to train with sound
clips instead of text annotations, addressing the issue of data scarcity.
However, VoiceLDM often produces repetitive and mumbled speech
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due to a lack of temporal alignment between speech and text. More
recently, AudioBox [21] introduces a unified model based on flow-
matching, capable of generating various audio modalities. AudioBox
is trained on data annotated by a large language model or human
experts, encompassing diverse speech attributes such as age, gender,
and accent. However, as the labels primarily focus on speaker style
rather than environmental context, AudioBox’s ability to generate
a wide range of environmental sounds remains limited.

In this paper, we present VoiceDiT, a novel audio generation
pipeline that not only produces natural speech but also allows for
conditioning on the acoustic environment. The proposed pipeline
features three key components: (1) data synthesis and refinement for
limited training data, (2) a transformer-based architecture designed
for multi-task performance, and (3) an image-to-audio transla-
tor (I2A-Translator) to enhance flexibility in handling diverse inputs.

Current efforts to integrate TTA and TTS systems are constrained
by the lack of large speech datasets that are both accurately tran-
scribed and reflective of the diverse audio conditions encountered
in real-world scenarios [25]–[29]. To address this issue, we propose
a practical strategy for data acquisition by first constructing a large-
scale synthetic dataset, where environmental noise and reverberation
are added to clean speech for pre-training the model. Subsequently,
we refine the real-world speech dataset [20] for fine-tuning, which
helps bridge the domain gap between synthetic and real-world data.

We then introduce a Dual-condition Diffusion Transformer (Dual-
DiT), designed to generate environment-aware speech by
incorporating two distinct conditions: one for speech and another
for environmental sound. For stable and efficient speech generation,
we develop a TTS module that meticulously aligns text with speech
using alignment information [9], along with a Latent Mapper that
compresses long text conditions into a latent space. Additionally,
to ensure the model generates sounds suitable for the given
environmental conditions, we integrate a cross-attention module into
the Dual-DiT blocks. This module injects environmental features,
enabling the model to generate sounds that align with the conditions.

Finally, to broaden our model’s applicability, we introduce a
diffusion-based I2A-Translator that converts image embeddings
into audio embeddings. Unlike text, images provide a more intuitive
representation of environments, especially for complex or abstract
scenarios. Through the I2A-Translator, our model can generate
diverse and nuanced audio conditioned on both text and images.

Our comprehensive experimental results demonstrate that
VoiceDiT excels at generating environment-aware speech that aligns
closely with user prompts, achieving state-of-the-art performance
across both qualitative and quantitative metrics. This success under-



scores the potential of VoiceDiT for a wide range of applications.

II. METHOD

A. Data Preparation

Pre-training dataset. To train the TTS components that generate
intelligible speech, it is essential to have a speech dataset aligned
with corresponding transcripts. However, large-scale real-world
transcribed speech datasets are currently scarce. To address this
shortage of data, we construct a large-scale synthetic dataset
by adding various noises to clean speech. For the noise data,
we utilize WavCaps [30], a sound event dataset with audio
captions. Since WavCaps contains a notable amount of speech
data alongside environmental sounds, we filter out speech-related
samples, retaining 340K environmental sound samples. We then
mix clean speech from LibriTTS-R [31] with the noise data,
using a signal-to-noise ratio value randomly selected from a
uniform distribution within the range of 2 to 10. Furthermore, to
simulate various environmental conditions, we apply Room Impulse
Response filters with a certain probability.

Fine-tuning dataset. To bridge the domain gap between synthetic
and real-world data, we further fine-tune our model on the in-the-
wild speech dataset, AudioSet-speech [20]. This is a speech subset
of AudioSet transcribed with ASR models. Despite a carefully
designed ASR process for accurate transcription, as detailed in [20],
AudioSet-speech still contains many inaccurate transcriptions. Ad-
ditionally, since the audio length is fixed at 10 seconds, non-speech
segments are present before and after the speech segments within
the audio sample. Such misaligned data hinders the alignment of
speech and text during the training of TTS model. To address these
issues, we implement a two-step preprocessing approach [32]. First,
we compute the word error rate (WER) on AudioSet-speech dataset
using the Whisper large-v3 model [33], filtering out samples where
the WER exceeds 20%. This process reduces the original 597K
speech data to a refined dataset of 400K, with most of the discarded
data consisting of songs or audio featuring multiple speakers. Next,
we use a forced aligner to align the transcript of spoken words with
the corresponding audio recording. Then, we truncate non-speech
segments from the beginning and end of the speech segment,
ensuring proper alignment between the speech and transcripts.

B. Model Architecture

VoiceDiT is a latent diffusion model with two components: the
TTS module, which generates text-aligned acoustic features, and
Dual-condition Diffusion Transformer (Dual-DiT), a decoder that
synthesizes environment-aware speech from two input conditions.
An overview of the architecture is provided in Fig. 1.

TTS module. The TTS module consists of a text encoder and a
duration predictor, both adopted from Glow-TTS [9]. This module
is responsible for extracting time-aligned linguistic information to
generate the mel-spectrogram y1:F from the input text sequence
x1:L, where F and L represent the lengths of the respective
sequences. First, the text encoder extracts linguistic information µ̃1:L

from the input text sequencex1:L. Then, the upsampled encoded text
Up(µ̃1:L) = µ̃1:L,A∗ is obtained according to the best alignmentA∗

between µ̃1:L and the mel-spectrogram y1:F . During training, the
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Fig. 1. Model architecture of VoiceDiT. VoiceDiT consists of a TTS module and
a Dual-DiT model. A cross-attention module is integrated into each DiT block to
inject environmental conditions. “D.P” stands for Duration Predictor.

alignment A∗ is determined using MAS. The text encoder is trained
to maximize the probability p(y1:F ; µ̃1:L,A∗,I) by minimizing the
encoder loss (Lenc). Furthermore, the optimal alignment is used to
extract ground truth duration d, which supervises the training process
of duration predictor by loss function Ldp = ∥ log(d)− log(d̂)∥22,
where d̂ is predicted duration conditioned on µ̃1:L. During inference,
the duration predictor replaces MAS to provide alignment since
only text is provided at this stage.

Dual-condition diffusion transformer. We present the Dual-DiT,
a model designed to fuse two distinct conditions to generate natural
and coherent speech. We begin by adopting a Transformer-based
architecture [34] as our base model, utilizing its multi-head attention-
based fusion mechanism, which is effective at modeling long-range
dependencies and facilitating efficient modality fusion [35].

Subsequently, we explore two methods for incorporating the
acoustic feature into the DiT model. When long acoustic features
are integrated via cross-attention, the computational complexity
scales quadratically with the sequence length [36]. Alternatively,
we concatenate the acoustic features with the noisy input in the mel-
spectrogram space before passing them through the DiT model. This
method yields more stable training and produces natural-sounding
speech. However, training the diffusion model in the high-resolution
mel-spectrogram space remains computationally demanding. To
address this, we propose a Latent Mapper, consisting of two 2D
convolutional layers, to map the long acoustic features into the latent
space of the DiT. Specifically, the acoustic featureµ1:F of sizeT×F
is mapped into a latent representation µlatent with a resolution of
8× T/4×F/4, aligning with the resolution of the noisy latent. By
employing the Latent Mapper, we enable the diffusion model to be
trained in the latent space, significantly reducing the computational
cost by 94% compared to pixel-space-based DiT models.

To enable the model to generate sounds appropriate for the given
environment conditions, we design the DiT block by incorporating a
cross-attention module [37]. In our implementation, environmental
conditions are extracted using the Contrastive Language-Audio



Pre-training (CLAP) audio encoder. The original DiT processes
this additional conditional information through adaptive layer
norm (adaLN) modules where the scale and shift parameters are
regressed from the sum of the time embedding and condition label.
However, due to adaLN’s reliance on affine transformations, there
is a potential risk of losing detailed conditioning information [38].
To address this issue, we introduce a cross-attention module
between the self-attention and feed-forward layers. This design
choice ensures that CLAP embeddings are directly injected into the
DiT model via cross-attention, thereby facilitating a more precise
representation of detailed environmental sounds.

C. I2A-Translator

To broaden our model’s applicability, we introduce a diffusion-
based I2A-Translator, an expert network that converts image
latent into audio latent. Following V2A-Mapper [39], we train a
Transformer network fi2a to predict the CLAP audio embedding
z0 from a Contrastive Language-Image Pre-Training (CLIP) [40]
image embedding y. The training objective is formulated as
Li2a = Et∼[1,T ] [∥z0 − fi2a(t, zt, y)∥]. In this setup, the input
of the Transformer comprises timestep embedding t, noisy
audio embedding zt, image embedding y, and a learnable token.
The output from the network at the learnable token position is
considered to be the recovered audio embedding during inference.
This component enables the model to accept visual prompts,
significantly expanding its range of applications and enhancing its
versatility and adaptability to various practical scenarios.

D. Training

The training process of VoiceDiT mostly follows the framework
of VoiceLDM [20], which takes two conditions as input. First, an
input audio is encoded into a latent representation z0 by a pre-trained
variational autoencoder (VAE) encoder. A noisy latent of zt at a
specific timestep t is obtained through the forward diffusion process
by adding noise to z0 according to a predefined noise schedule.

The TTS module and Latent Mapper encode the content prompt
textcont to form the text latent µlatent, which serves as the content
condition ccont. This text latent is concatenated with the noisy
latent zt and fed into the DiT model. Meanwhile, the CLAP audio
encoder directly processes the input audio to derive the environment
condition cenv, eliminating the need for a manually annotated
prompt textenv [19]. Finally, the model is trained to predict the
added noise ϵ using the re-weighted training objective as follows:

Ldiff = ∥ϵ− ϵθ(zt, t,cenv,ccont)∥22. (1)

The parameters of the Dual-DiT, TTS module, and Latent Mapper
are jointly optimized, while the other components remain frozen.

E. Inference

Our Dual-DiT samples new latent conditioned on cenv and ccont.
The condition ccont is generated from a content text prompt follow-
ing the same procedure as in training, while cenv is constructed by
extracting CLAP embedding from each modality input. The CLAP
text encoder is employed for text inputs, whereas the CLIP image
encoder is used for image inputs, with the embeddings mapped to
the CLAP embedding space via the I2A-Translator. To enhance the

TABLE I
PERFORMANCE EVALUATION ON THE AC-FILTERED. MOS RESULTS ARE
PRESENTED WITH A 95% CONFIDENCE INTERVAL. ↑ DENOTES HIGHER IS

BETTER, ↓ DENOTES LOWER IS BETTER.

Model FAD↓ CLAP↑ WER(%)↓ Nat.↑ Intel.↑ REL ↑

GT - 0.40 17.47 4.24 ±0.10 4.08 ±0.11 4.26 ±0.09

VoiceLDM 5.56 0.21 10.39 2.94 ±0.11 3.35 ±0.12 3.24 ±0.11

VoiceDiT 4.60 0.22 7.09 3.41 ±0.10 4.32 ±0.08 3.86 ±0.09

controllability and flexibility of each condition, we employ the dual
classifier-free guidance [20]. Specifically, given the two conditions
cenv and ccont, the diffusion score ϵθ is adjusted as follows:
ϵ̂θ(zt,cenv,ccont) = ϵθ(zt,cenv,ccont)

+wenv

(
ϵθ(zt,cenv,∅cont)− ϵθ(zt,∅env,∅cont)

)
+wcont

(
ϵθ(zt,∅env,ccont)− ϵθ(zt,∅env,∅cont)

)
, (2)

where wenv and wcont are the guidance scale for environment
and content conditions, respectively, ∅ indicates the null condition.
After generating a new latent vector from Dual-DiT, it is converted
to mel-spectrogram space using the VAE decoder. Finally, the
pre-trained HiFi-GAN vocoder [41] transforms the mel-spectrogram
into the desired audio.

III. EXPERIMENTS

A. Experimental Setup

Data description. To pre-train the VoiceDiT, we use the processed
WavCaps, which contains 340K non-speech data, and LibriTTS-R,
a multi-speaker corpus with 585 hours of speech data. For
fine-tuning, we utilize AudioSet-speech, a real-world speech dataset
comprising 597K samples, refined to 400K for training. To train
the I2A-Translator, we use the VGGSound dataset, which contains
165K 10-second video clips. CLIP image embeddings are extracted
from 10 frames per video, averaged along the time axis for input.

Implementation details. The DiT_L/2 model, consisting of
24 DiT blocks with a hidden dimension of 1,024, serves as the
backbone network. We adopt a VAE to encode the mel-spectrogram
into a latent representation, which is then divided into patches of size
2 for the DiT input. For the speaker conditioning, a 192-dimensional
speaker embedding is extracted using WavLM-ECAPA [42]
model from ESPnet-SPK toolkit [43]. The entire model is
pre-trained for 100K steps using synthetic data exclusively and then
fine-tuned for 20K steps with additional data from AudioSet-speech.
During pre-training, duration loss (Ldp), encoder loss (Lenc), and
diffusion loss (Ldiff ) are employed to achieve text-to-speech
alignment. After this phase, the converged TTS module is kept
frozen, and only the diffusion loss is applied. We use AdamW
optimizer [44] with a constant learning rate of 10−4 for pre-training
and halved it at fine-tuning. Our model is trained on 8 NVIDIA
A6000 GPUs with a batch size of 16. In inference, we empirically
set wdesc = 5, wcont = 5 for dual classifier-free guidance.

Evaluation metrics. For objective evaluation, we utilize Frechet
Audio Distance (FAD) [45] and Kullback-Leibler (KL) divergence
to assess audio quality, and the CLAP score to measure the
correspondence between the text description and the generated
audio. Additionally, to evaluate speech intelligibility, we calculate



TABLE II
THE COMPARISON BETWEEN CONDITIONING METHODS ON AC-FILTERED.
Text: TEXT CONDITIONING METHOD, Env: ENVIRONMENT CONDITIONING

METHOD, CAT: CONCATENATION, CA: CROSS-ATTENTION.

Model Text Env FAD↓ KL↓ CLAP↑ WER(%) ↓

U-Net CAT add 7.88 2.22 0.13 9.28

Dual-DiT
CA adaLN 4.23 1.44 0.24 94.80
CAT adaLN 4.89 1.51 0.23 10.33
CAT adaLN+CA 4.61 1.49 0.22 7.09

the word error rate (WER) of the synthesized speech against the
ground truth using the Whisper Large-v3 model. For subjective
evaluation, we assess three main aspects of speech synthesis
with the environment: Mean Opinion Score (MOS) of Speech
Naturalness (Nat.), MOS of Speech Intelligibility (Intel.), and
Relevance to text description (REL) [19]. During these evaluations,
20 participants rate the naturalness, intelligibility, and the match
between environmental sounds and their corresponding descriptive
text on a scale of 1 to 5. The subjective evaluation is conducted on 40
randomly selected samples per model using a unified set of prompts.

IV. RESULTS

A. Comparison with State-of-the-arts

We compare our VoiceDiT model with VoiceLDM on AC-
filtered [20], which is created by transcribing the speech data from
the AudioCaps test set. As shown in Table I, our model outperforms
VoiceLDM across all metrics, with significant improvements of
32.9% in WER and 28.96% in intelligibility. VoiceLDM does not
ensure alignment between speech and text, leading to low-quality
outputs including repetitive speech. In contrast, by explicitly
aligning speech and text through our TTS module, VoiceDiT
generates more intelligible speech. Remarkably, it even achieves
a higher intelligibility score compared to the ground truth.

B. Ablation Study

Model architecture. To assess the performance differences between
the Dual-DiT and the U-Net architecture, we train the U-Net with
all settings identical except for the model structure. The U-Net
architecture follows the setup from [19], with encoder block channel
dimensions of [cu,2cu,3cu,5cu], where cu is the base channel
number, set to 256 in our experiments. The U-Net model has a total
of 467M parameters, while the Dual-DiT model contains 457M pa-
rameters. Comparing the first and third rows of Table II, we observe
that the Dual-DiT model outperforms the U-Net architecture across
all objective metrics except WER. This indicates that DiT leverages
the power of the multi-head attention mechanism to capture long-
range dependencies and spatial-temporal representations, resulting
in temporally consistent and high-quality audio outputs.

Text conditioning methods. We evaluate two approaches for
conditioning the text latent from the TTS Module on the DiT model.
Initially, we inject the text latent directly into the cross-attention mod-
ule of the Dual-DiT block. Subsequently, we concatenate the text
latent with the noisy latent along the channel dimension, feeding this
combined input into the Dual-DiT. As shown in the second and third
rows of Table II, the cross-attention method generates completely un-
intelligible speech, resulting in a WER of 94.80%. In contrast, when
the text latent is concatenated into the DiT input, the model produces

TABLE III
PERFORMANCE COMPARISON OF TEXT-TO-AUDIO CAPABILITIES ON THE

AUDIOCAPS TEST SET AND IMAGE-TO-AUDIO CAPABILITIES ON THE
VGGSOUND TEST SET. THE RESULTS FOR † ARE AS REPORTED IN [47], [46].

Modality Model Params FAD↓ KL↓ CLAP↑

- GT - - - 0.52

Text
AudioLDM [19] 541M 4.27 2.01 0.42
VoiceLDM [20] 508M 10.91 2.95 0.29

VoiceDiT (Ours) 565M 3.55 1.87 0.45

Image
SpecVQGAN [47]† 379M 6.64 3.10 -

Im2Wav [46]† 360M 6.41 2.54 -
VoiceDiT (Ours) 565M 3.02 2.73 -

sufficiently intelligible speech after the same number of training
steps, achieving a WER of 10.33%. These results demonstrate that
the proposed method effectively preserves the sequence information
of speech content, facilitates faster learning compared to the 3M
training steps required by previous work [20], and significantly
aids in generating intelligible speech. Note that the environmental
conditions are controlled solely through the adaLN module.

Environmental conditioning methods. We perform an ablation
study on the cross-attention module within the DiT block to evaluate
its impact on generating environment-aware speech. As detailed in
the third and fourth rows of Table II, the cross-attention module leads
to improved performance across the FAD, KL divergence, and WER
metrics. This enhancement is primarily due to the cross-attention
module’s efficacy in integrating CLAP embeddings. The cross-
attention module captures comprehensive environmental details,
compensating for the limitations of the adaLN, which tends to lose
intricate details due to its reliance on simple affine transformations.

C. X-to-Audio Capabilities

First, we evaluate the zero-shot TTA generation capabilities
of VoiceDiT on the AudioCap test set, applying dual classifier
guidance with wdesc = 9 and wcont = 1. As summarized in Table III,
VoiceDiT outperforms VoiceLDM across all evaluation metrics,
demonstrating significantly superior performance. Moreover,
despite not being explicitly trained for TTA, our approach achieves
better FAD and KL divergence scores compared to AudioLDM [19].
Next, we assess the image-to-audio generation capabilities of
VoiceDiT using the VGGSound test set. Utilizing the I2A-Translator
for image-based prompts, VoiceDiT achieves a comparable KL
divergence score and a superior FAD score relative to Im2Wav [46],
the state-of-the-art image-to-audio generation model. These findings
demonstrate the versatility of our model in generating high-quality
audio from diverse multi-modal inputs, including text and images.

V. CONCLUSION

In this paper, we propose VoiceDiT, a multi-modal generative
model that generates environment-aware speech from text, audio,
and visual prompts. The Dual-DiT model effectively preserves
speech alignment while adapting to environmental conditions, and
the I2A-Translator enhances the model’s versatility by incorporating
visual inputs. Experimental results demonstrate that VoiceDiT
significantly outperforms existing methods in both audio quality
and multi-modality integration. Our research facilitates adaptive
speech generation for various acoustic environments, offering
promising applications in filmmaking and audiobook production.
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