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ABSTRACT

Artefacts that differentiate spoofed from bona-fide utterances can
reside in specific temporal or spectral intervals. Their reliable de-
tection usually depends upon computationally demanding ensemble
systems where each subsystem is tuned to some specific artefacts.
We seek to develop an efficient, single system that can detect a broad
range of different spoofing attacks without score-level ensembles.
We propose a novel heterogeneous stacking graph attention layer
that models artefacts spanning heterogeneous temporal and spec-
tral intervals with a heterogeneous attention mechanism and a stack
node. With a new max graph operation that involves a competitive
mechanism and a new readout scheme, our approach, named AA-
SIST, outperforms the current state-of-the-art by 20% relative. Even
a lightweight variant, AASIST-L, with only 85k parameters, outper-
forms all competing systems.

Index Terms— audio spoofing detection, anti-spoofing, graph
attention networks, end-to-end, heterogeneous

1. INTRODUCTION

Spoofing detection solutions can be an important consideration when
automatic speaker verification systems are deployed in real-world
applications. They help to protect reliability by determining whether
an input speech utterance is genuine (bona-fide) or spoofed. Prac-
tical spoofing detection systems are required to detect spoofed ut-
terances generated using a wide range of different techniques. The
ASVspoof community has led research in the field with a series of
challenges accompanied by public datasets [1-4]. Two major sce-
narios are being studied, namely logical access (LA) and physical
access. The focus in this paper is LA, which considers spoofing at-
tacks mounted with voice conversion and text-to-speech algorithms.

Recent studies show that discriminative information (i.e., spoof-
ing artefacts) can reside in specific temporal and spectral inter-
vals [5-9]. Artefacts tend to be dependent upon the nature of the
attack and the specific attack algorithm. Adaptive mechanisms,
which have the flexibility to concentrate on the domain in which
the artefacts lie, are therefore crucial to reliable detection. In our
recent works [10, 1 1], we proposed end-to-end systems leveraging a
RawNet2-based encoder [12, 13] and graph attention networks [14].
We model both temporal and spectral information concurrently
using a pair of parallel graphs and then apply element-wise multi-
plication to the two graphs to combine and exploit the information

Code and models are available at:
https://github.com/clovaai/aasist
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each provides. While we achieve state-of-the-art performance [11],
we believe that there is still room for further improvement. Be-
cause the two graphs are heterogeneous, integrating them using a
heterogeneity-aware technique should be beneficial.

We propose four extensions to our previous work, RawGAT-
ST [11] where the first three compose the proposed model named
AASIST. The fourth relates to a lightweight, efficient version of AA-
SIST. First, we propose an extended variant of the graph attention
layer, referred to as a “heterogeneous stacking graph attention layer”
(HS-GAL). It facilitates the concurrent modelling of heterogeneous
(temporal and spectral) graph representations. A HS-GAL includes
a modified, heterogeneity-aware attention mechanism and an ad-
ditional stack node, each inspired from [15] and [16] respectively.
HS-GAL directly models two arbitrary graphs where the two graphs
can have different numbers of nodes and different dimensionalities.
Second, we propose a mechanism referred to as “max graph opera-
tion” (MGO) that mimics the max feature map [17]. MGO involves
two branches where each branch comprises two HS-GALs and graph
pooling layers, followed by an element-wise maximum operation.
The underlying objective here is to enable different branches to
learn different groups of artefacts. Components of branches that
better capture artefacts will then persist following the max opera-
tion. Third, we present a new readout scheme that utilises the stack
node. Finally, given the application of anti-spoofing solutions in
aasisting automatic speaker verification systems [18, 19] and given
the associated requirement for practical, lightweight models, we
further propose a lightweight variant of AASIST which comprises
only 85k parameters.

2. PRELIMINARIES

In this section, we summarise the components that are common to
the RawGAT-ST [ ! 1] and new AASIST models. We describe: i) the
RawNet2-based encoder used for extracting high-level feature maps
from raw input waveforms; ii) the graph module which includes
graph attention and graph pooling layers. These two components
are the “encoder” and “graph module” in Fig. 1, respectively.

2.1. RawNet2-based encoder

A growing number of researchers are adopting models that oper-
ate directly upon raw waveform inputs. The work described in this
paper utilises a variant of the RawNet2 model that was introduced
in [12] for the task of automatic speaker verification and applied
subsequently to anti-spoofing [11, 13]. It extracts high-level repre-
sentations F, F € RY*5*T directly from raw waveform inputs
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Fig. 1. The AASIST framework. Identical to [

]: the encoder extracts F'; two graph modules are used to model temporal and spectral

domains in parallel. Proposed: we construct a combined heterogeneous graph using two graph module outputs; a max graph operation
technique is applied to two branches that model heterogeneous graphs in parallel before the application of an element-wise maximum; each
branch includes two HS-GAL layers and two graph pooling layers (graph pooling layers and one HS-GAL layer is omitted in the illustration);
the readout scheme concatenates node-wise maximum and average, and the stack node which is then followed by an output layer.

where C, S, and T are the number of channels, spectral (frequency)
bins, and the temporal sequence length respectively.

In contrast to the original RawNet2 model, we interpret the out-
put of the sinc-convolution layer as a 2-dimensional image with a
single channel (akin to a spectrogram) rather than a 1-dimensional
sequence. This is achieved by treating the output of each filter as a
spectral bin. A series of six residual blocks with pre-activation [20]
is used to extract the high-level representation. Each residual block
comprises a batch normalisation layer [21], a 2-dimensional convo-
lution layer, SeLLU activation [22], and a max pooling layer. Further
information can be found in [11].

2.2. Graph module

Graph attention network. Recent advances in graph neural net-
works have brought performance breakthroughs in a number of
tasks [10, 14,23] where a graph is defined by a set of nodes and a set
of edges connecting different node pairs. Using high-dimensional
vectors as nodes, graph neural networks can be used to model the
non-Euclidean data manifold between different nodes. We have
shown that graph attention networks [14] can be applied to both
speaker verification [23] and spoofing detection [10, 1 1].

The graph attention layer used in our work is a variant of the
original architecture [14]. In our work, graphs are fully-connected
in the sense of there being edges between each and every node pair.
This is because the relevance of each node pair to the task at hand
cannot be predetermined. Instead, the self-attention mechanism in a
graph attention layer derives data-driven attention weights, assigned
to each edge, to reflect the relevance of each node pair. Before de-
riving attention weights, an element-wise multiplication is utilised
to make edges symmetric. The reader is referred to [11] (Section 3)
for further details.

Graph pooling. Various graph pooling layers have been proposed to
effectively reduce the number of nodes [24,25]. This has the aim of
reducing complexity and improving discrimination. We apply a sim-
ple attentive graph pooling layer to the output of each graph attention
layer. Except for the omission of projection vector normalisation,
our implementation is identical to that in [25].

Let G, G € RV P be the output graph of a graph attention layer
where N is the number of nodes and D refers to the dimensional-

ity of each node. Note that the order of nodes is meaningless; the
relationships between them are defined via the attention weights as-
signed to each edge. Attention weights are derived via G - P where -
is the dot product and P, P € RP is a projection vector that returns
a scalar attention weight for each node. After the multiplication of
a sigmoid non-linearity with the corresponding &k nodes, the nodes
with the top-k values are retained while the rest are discarded.

3. AASIST

AASIST builds upon the foundation of our previous work, RawGAT-
ST, whereby two heterogeneous graphs, one temporal and the other
spectral, are combined at the model-level. However, instead of using
trivial element-wise operations and fully-connected layers, AASIST
relies upon a more elegant approach using the proposed HS-GAL, in
addition to the proposed MGO and the new readout technique.

The AASIST framework is illustrated in Fig. 1. High-level
representations F' are extracted by feeding raw waveforms into the
RawNet2-based encoder (Section 2.1). The pair of graph modules
first model the temporal and spectral domains in parallel, giving
G: and G, (Section 2.2). The results are combined into Gs; (Sec-
tion 3.1) and processed by the MGO (Section 3.3) which includes
four HS-GAL layers (Section 3.2) and four graph pooling layers.
The readout operation is then performed, followed by an output
layer with two nodes.

3.1. Graph combination

We first compose a combined heterogeneous graph (Gs; in Fig. 1)
from the pair of temporal and spectral graphs. Let Gy, G, € RVt XDt
and Gs, Gs € R™=*P= be temporal and spectral graphs respectively,
each derived according to:

G: = graph-module(mazs(abs(F))), 1

Gs = graph_module(mazx:(abs(F))), 2)

where graph_module refers to the combination of graph attention and
graph pooling layers and where F' € RE*5*T is the encoder out-
put feature map. We then formulate a combined graph G.; which
has N; + N, nodes by adding edges between every node in G and
every node in G and vice versa (dotted arrows under Gs¢). The
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Table 1.
EER (%, P2) for the baseline RawGAT-ST [

Results in terms of EER (%) for all 13 attacks in the ASVspoof 2019 LA evaluation set, pooled min t-DCF (P1), and pooled
] and the proposed AASIST models. RawGAT-ST results are regenerated using the same GPU

environment used for AASIST, and from experiments with three different random seeds. Results in parentheses show the single best pooled
result. The best performance for each separate attack and the best pooled results are highlighted in boldface.

System A07 A08 A09 Al10 All Al12 Al13 Al4 Al5 Al6 Al17 Al18 Al19 P1 P2 (%)
RawGAT-ST || 1.19 033 0.03 154 041 154 0.14 0.14 1.03 0.67 1.44 3.22 0.62 | 0.0443(0.0333) 1.39(1.19)
AASIST 0.80 044 0.00 1.06 031 091 0.1 0.14 0.65 0.72 152 340 0.62 | 0.0347(0.0275)  1.13(0.83)

new edges in the combined graph G allow for the estimation of
attention weights between pairs of heterogeneous nodes which each
span both temporal and spectral domains. Despite the combination,
G's¢ remains a heterogeneous graph in that nodes in each of the con-
stituent graphs lie in different latent spaces; N and D; are normally
different to N and Ds.

3.2. HS-GAL

The new contribution is based upon a heterogeneous stacking graph
attention layer (HS-GAL in Fig. 1). It comprises two components,
namely heterogeneous attention and a stack node. Our approach to
heterogeneous attention is inspired by the approach to the modelling
of heterogeneous data described in [15].

The input to the HS-GAL is first projected into another latent
space to give each of the two graphs with node dimensionalities D,
and Dy a common dimensionality Ds:. Two fully-connected layers
are utilised for this purpose, each projecting one of the constituent
sub-graphs to a dimensionality of Ds;.

Heterogeneous attention. Whereas the homogeneous graphs use
a single projection vector to derive attention weights, we use three
different projection vectors to calculate attention weights for the het-
erogeneous graph. They are illustrated inside G5 of Fig. 1 and are
used to determine attention weights for edges connecting: (i) G; to
G (edges between blue nodes); (ii) nodes in G to G; and G; to G,
(dotted edges); (iii) nodes in G5 to nodes in G (edges between or-
ange nodes). The projection vector in the case of (ii) above applies
to edges in both directions; this is possible because the graph atten-
tion layer we use applies element-wise multiplication between two
nodes making attention weights symmetrical, whereas the original
graph attention layer concatenates two nodes [14].

Stack node. We also introduce a new, additional node referred to as
the “stack node”. The role of the stack node is to accumulate het-
erogeneous information, namely information or the relationship be-
tween temporal and spectral domains. The stack node is connected
to the full set of nodes (stemming from G; and Gs). The use of
uni-directional edges from all other nodes to the stack node helps to
preserve information in both G; and Gs. It does not transmit infor-
mation to other nodes. The output stack node of the first HS-GAL
layer is used to initialise the stack node of the following layer. The
behaviour of the stack node is similar to that of classification to-
kens [16], except that connections to other nodes are uni-directional.

3.3. Max graph operation and readout

The new “max graph operation” (MGO), highlighted with a large
grey box in Fig. 1, is inspired by a number of works in the anti-
spoofing literature that showed the benefit of element-wise maxi-
mum operations [11,26]. MGO aims to combine and exploit differ-
ent solutions to spoofing detection and the potentially different arte-
facts they detect. It utilises two parallel branches where an element-
wise maximum is applied to the two branch outputs. Specifically,

each branch involves two HS-GALSs in sequence where a graph pool-
ing layer is applied to the output of each HS-GAL. Thus, MGO
comprises four HS-GALs and four graph pooling layers. The two
HS-GALs in each branch share the same stack node; the stack node
of the preceding HS-GAL is passed to the following HS-GAL. An
element-wise maximum is also applied to the stack nodes of each
branch.

The proposed readout scheme is illustrated in the right-most
grey box of Fig. 1. First, we derive four nodes by applying a node-
wise maximum and average to nodes originally belonging to Gs and
G:, respectively. The last hidden layer is then formed from the con-
catenation of these four nodes with the stack node.

3.4. Lightweight variant of AASIST

We also report a lightweight variant, namely AASIST-L. Leaving the
architecture identical, we tune the number of parameters to compose
a model with 85k parameters using the population-based training al-
gorithm [27]. This results in a 332kB model. Leveraging techniques
such as half-precision training, the size can be further reduced. We
demonstrate that AASIST-L still outperforms all models except AA-
SIST.

4. EXPERIMENTS AND RESULTS

4.1. Dataset and metrics

All experiments were performed using the ASVspoof 2019 logical
access (LA) dataset [3, 37]. It comprises three subsets: train, de-
velopment, and evaluation. The train and the development sets con-
tain attacks created from six spoofing attack algorithms (A01-A06),
whereas the evaluation set contains attacks created from thirteen al-
gorithms (A7-A19). Readers are referred to [37] for full details.

We use two metrics: the default minimum tandem detection cost
function (min t-DCF) [18] and the equal error rate (EER). The min
t-DCF shows the impact of spoofing and the spoofing detection sys-
tem upon the performance of an automatic speaker verification sys-
tem whereas the EER reflects purely standalone spoofing detection
performance.

Wang et al. [33] showed that the performance of spoofing detec-
tion systems can vary significantly with different random seeds. We
observed the same phenomenon; when trained with different random
seeds, the EER of the baseline RawGAT-ST [11] system was found
to vary between 1.19% and 2.06%. Thus, our baseline results are
slightly different to those reported in [11]. All results reported in
this paper are average results in addition to the best result from three
runs with different random seeds.

4.2. Implementation details

AASIST was implemented using PyTorch, a deep learning toolkit
in Python. Inputs in the form of raw waveforms of 64,600 sam-
ples (= 4 seconds) are fed to the RawNet2-based encoder. The
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Table 2. A comparison to recently proposed, competing state-of-the-art systems. Results reported in terms of pooled min t-DCF and pooled
EER (%). For the proposed AASIST and AASIST-L models, we report the best single result. All systems shown are single models without

any kind of score-level fusion.

System # Param Front-end Architecture min t-DCF EER (%)
Ours 297k Raw waveform AASIST 0.0275 0.83
Ours 85k Raw waveform AASIST-L 0.0309 0.99
Taketal. [11] 437k Raw waveform RawGAT-ST 0.0333 1.19
Zhang et at. [28] 1,100k FFT SENet 0.0368 1.14
Hua et al. [29] 350k Raw waveform Res-TSSDNet 0.0481 1.64
Ge et al. [30] 24,480k Raw waveform Raw PC-DARTS 0.0517 1.77
Lietal. [31] 960k CQT MCG-Res2Net50 0.0520 1.78
Chen et al. [32] - LFB ResNet18-LMCL-FM 0.0520 1.81
Wang et al. [33] 276k LFCC LCNN-LSTM-sum 0.0524 1.92
Luo et al. [34] - LFCC Capsule network 0.0538 1.97
Zhang et al. [35] - LFCC Resnet18-OC-softmax 0.0590 2.19
Li et al. [36] - CQT SE-Res2Net50 0.0743 2.50
. . . . in the literature.
Table 3. Ablation experiments which demonstrate the impact of

each of the listed techniques. Performance reported in terms of
pooled min t-DCF and EER and for “average(best)” results from
three experiments with different random seeds.

Configuration min t-DCF EER
AASIST 0.0347(0.0275) 1.13(0.83)
w/o heterogeneous attention  0.0415(0.0384) 1.44(1.37)
w/o stack node

(conventional readout) 0.0380(0.0330) 1.21(1.03)
w/o MGO 0.0410(0.0378) 1.35(1.19)

first layer of the encoder, sinc-convolution [38], has 70 filters. The
RawNet2-based encoder consists of six residual blocks. The first
two have 32 filters while the remaining four have 64 filters. The first
two graph attention layers have 64 filters. Graph pooling layers re-
move 30% and 50% of temporal and spectral nodes, respectively.
All subsequent graph attention layers have 32 filters and are fol-
lowed by graph pooling which further reduces the number of nodes
by 50%. We used Adam optimiser [39] with a learning rate of 10~*
and cosine annealing learning rate decay. The AASIST-L system
was tuned with a population-based training algorithm using 7 gener-
ations where each generation includes 30 experiments with different
hyper-parameters [27].

4.3. Results

Table 1 shows the EER for individual attacks, the pooled min t-DCF,
and the pooled EER. For pooled results, the best performance is
shown in brackets. Results are shown for the proposed AASIST
model and the state-of-the-art baseline RawGAT-ST [11] model.
AASIST performs similarly or better than the baseline for 9 out of
the 13 conditions. For the remaining 4 conditions for which the
baseline performs better, the differences are modest. For conditions
where AASIST performs better, improvements can be substantial,
e.g. for the A15 condition where AASIST outperforms the baseline
by over 35% relative (1.03% vs 0.65%). Pooled min t-DCF and EER
results are shown in the two right-most columns of Table 1. AASIST
outperforms the RawGAT-ST baseline in terms of both the pooled
min t-DCF and the pooled EER. For AASIST, the min t-DCF drops
by over 20% relative (0.0443 vs 0.0347). In the best case, AASIST
delivers an EER of 0.83% and a min t-DCF of 0.0275. These results
are better than the results for any competing single system reported

Comparison to state-of-the-art systems. Table 2 presents a com-
parison of the proposed AASIST model to the performance of a
number of recently proposed competing systems [11,28-36]. The
set of systems covers a broad range of different front-end represen-
tations and model architectures. Five of the top six systems operate
upon raw waveform inputs while the top three systems are based
upon graph attention networks. The proposed AASIST system is the
best performing of all.

AASIST-L. Table 2 also shows a comparison in terms of complexity
for the lightweight AASIST-L model and other models for which the
number of parameters is openly available. In using only 85k param-
eters, AASIST-L is substantially less complex than all other systems.
The min t-DCF and EER achieved by the AASIST-L model are bet-
ter than those of all other systems except for the full AASIST model.
If appropriately modified using techniques such as half-precision in-
ference and parameter pruning, we believe that it would be small
enough to be used in embedded systems.

Ablations. Table 3 shows results for ablation experiments for which
one of the components in the AASIST model is removed. Results
show that all three techniques are beneficial; without any one of
them, results are worse than for the full AASIST model. The use
of heterogeneous attention has the greatest impact on performance.
While having less impact than heterogeneous attention and MGO,
the stack node is also beneficial.

5. CONCLUSION

We propose AASIST, a new end-to-end spoofing detection system
based upon graph neural networks. New contributions are three-
fold: (i) a heterogeneous stacking graph attention layer (HS-GAL),
used to model temporal and spectral sub-graphs, consisting of a het-
erogeneous attention mechanism and a stack node to accumulate
heterogeneous information; (ii) a max graph operation (MGO) that
involves the competitive selection of artefacts; (iii) a new readout
scheme. AASIST improves the performance of a state-of-the-art
baseline by over 20% relative in terms of pooled min t-DCF. Even
the lightweight version, AASIST-L, with 85k parameters, outper-
forms all competing systems.
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