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Abstract

Our objective is to translate continuous sign language into
spoken language text. Inspired by the way human interpreters
rely on context for accurate translation, we incorporate
additional contextual cues together with the signing video, into
a new translation framework. Specifically, besides visual sign
recognition features that encode the input video, we integrate
complementary textual information from (i) captions describing
the background show, (ii) translation of previous sentences, as
well as (iii) pseudo-glosses transcribing the signing. These
are automatically extracted and inputted along with the visual
features to a pre-trained large language model (LLM), which
we fine-tune to generate spoken language translations in text
form. Through extensive ablation studies, we show the positive
contribution of each input cue to the translation performance.
We train and evaluate our approach on BOBSL — the largest
British Sign Language dataset currently available. We show
that our contextual approach significantly enhances the quality
of the translations compared to previously reported results on
BOBSL, and also to state-of-the-art methods that we implement
as baselines. Furthermore, we demonstrate the generality of
our approach by applying it also to How2Sign, an American
Sign Language dataset, and achieve competitive results.

1. Introduction

Sign languages are the natural means of communication for deaf
communities [66]. They are visual-spatial languages and lack
standardised written forms [3, 26]. Sign languages exist indepen-
dently of spoken languages, with their own unique lexicons, or-
dering, and grammatical structures. Furthermore, sign languages
are expressed through both manual and non-manual components,
e.g. mouthings, which can be conveyed simultaneously [19, 74].

The focus of this work is sign language translation (SLT), the
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GT Translation: Beautiful petals that wave about in the wind.
Prediction: They re beautiful flowers and they re wafting in the wind.

Figure 1. Contextual cues in SLT: In addition to information extracted
from the signing content (at the bottom right corner), we give the sign
language translation model two contextual cues: the background de-
scription that identifies keywords describing the scene behind the signer,
and the previous sentence translations. In this example, the ground truth
(GT) translation has common words or semantics with the background
context (e.g., flower), and the previous sentence (e.g., wind).

process of transforming sign language into spoken language, in
the open-vocabulary setting. Achieving SLT could significantly
improve accessibility and inclusion for the deaf and hard-of-
hearing communities by reducing communication barriers.

A key challenge in SLT is the fact that sign languages
rely heavily on contextual discourse and spatial awareness
due to their visual-spatial nature [42, 48, 52, 67]. Indeed, a
study by [67] with fluent deaf signers found that a third of
their sentence-level signing clips could only be fully translated
when provided with additional discourse-level context. We next
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describe three examples of contextual dependencies in sign
language: (a) Signers use spatial indexing to identify referents
introduced earlier in the discourse (e.g. pointing to identify a par-
ticular person, object or any previously defined concept placed
in signing space) [4, 25, 43]; (b) Sign languages typically follow
a topic-comment structure [66]. For instance, the topic can refer
to setting the temporal framework (e.g. if ‘yesterday’ is signed,
all verbs in the translation should be in the past tense until a
new time is mentioned). Once a topic is setup, it is usually
not mentioned at every sentence but only re-established when
changed, making a sentence-level translation often ill-defined;
(c) Finally, sign language exhibits homonyms [66], where two
signs with similar hand movements can have different meanings
(e.g. ‘battery’ and ‘uncle’ in British Sign Language (BSL)).

Another major obstacle to automatic SLT is the scarcity
of large-scale training data. Sign languages are low resource
languages, with limited availability of signing videos on-
line, and manually translating signing content is extremely
time-consuming, requiring expert annotators.

In this paper, we turn to the underexplored and large-scale
BOBSL dataset [2], which consists of over 1,400 hours of BSL
interpreted TV broadcasts with accompanying English subtitles,
as our source of training data. In comparison to datasets with
sentence-level translations [11, 29, 85], interpreters in BOBSL
translate spoken language subtitles to signing using context,
both from the video playing in the background as well as
the previous discourse that has been signed (see Fig. 1). We
leverage this setting to explore the benefit of context for SLT
performance. Specifically, we use background descriptions
from a captioning model and predicted translations of previous
sentences, along with sign-level pseudo-glosses' and strong
signing visual features as inputs to a pre-trained LLM, which
we fine-tune to generate spoken language translations in text
form. As signers may use pointing to identify an object or
person on the screen, the background descriptions can help
with identifying the corresponding referents (e.g. there are
4,179 pointing occurrences in the BOBSL-CSLR test set
annotations [59], which spans only 6 hours). Furthermore,
ambiguities of homonyms and tenses/co-references due to a
topic-comment structure may be resolved thanks to the context
provided from previous sentences, as well as the background.

However, this task remains challenging due to the weak and
noisy nature of the TV subtitle supervision. The supervision
is weak because the subtitles are temporally aligned with the
speech, and not perfectly with the signing. Although we employ
existing automatic signing-subtitle alignment methods [7], subti-
tles may appear a few seconds before or after the corresponding
signing sequence. Additionally, the supervision is noisy because
words in the subtitle are not necessarily signed, and vice versa.
Indeed, sign language interpretation corresponds to a translation
— as opposed to a transcription — of the speech content, and can
often lead to simplification in vocabulary [6]. Furthermore, dur-

'We abuse the linguistic gloss term and refer to sign-level translations in
free-form English as glosses.

ing TV broadcasts, where time pressure is a factor, interpreters
may occasionally omit content to keep up with the spoken audio.
In this work, we make the following contributions: (i) we pro-
pose a new LLM-based model that integrates visual signing and
text features with contextual information, including video back-
ground descriptions and previous sentence translations; (ii) we
conduct a thorough analysis to examine the impact of each input
cue on the translation quality, and introduce an LLM-based
scoring mechanism that provides a more nuanced translation
assessment than traditional metrics such as BLEU [55]; (iii) we
evaluate previous state-of-the-art models [75, 84] on the
BOBSL dataset to establish a performance benchmark and find
our proposed model surpasses them significantly; (iv) we show
our contextual method generalises to How2Sign, an American
Sign Language (ASL) dataset, demonstrating its effectiveness.

2. Related Work

We discuss relevant works on isolated and continuous sign
language recognition, as well as sign language translation.
Isolated Sign Language Recognition (ISLR), which involves
classifying a short single-sign video clip into a sign category, has
been extensively researched over many years. In the past decade,
ISLR has made significant strides, largely due to the emergence
of deep spatiotemporal neural networks and the availability of
larger-scale datasets [1, 8, 9, 33, 36, 39, 40, 49]. In particular,
the I3D model [13] has demonstrated its effectiveness in
providing robust features for recognition [1, 36, 39]. More
recently, the Video Swin Transformer [47] has shown strong
ISLR results, and been employed as a backbone for various sign
language tasks involving continuous video streams [56, 59]. In
this work, we leverage the sign video encoder from [59] both
to obtain visual features and pseudo-glosses.

Continuous Sign Language Recognition (CSLR) typically
involves recognising gloss sequences — spoken language words
corresponding to semantic labels for individual signs — from a
continuous signing video clip. It is crucial to distinguish CSLR
from translation due to the significant grammatical differences
between signed and spoken languages [66]. Benchmarks
such as PHOENIX14 [38] and CSL-Daily [85], which have
manually glossed training data, are widely used for CSLR. Due
to a lack of temporal alignment between signs and video frames,
many studies [10, 18, 20, 30, 34, 50, 57, 73, 83, 87] utilise
the Connectionist Temporal Classification (CTC) loss [28].
More recently, [59] demonstrates the advantages of using
video-to-text retrieval on the challenging BOBSL dataset [2].
Automatic Sign Language Translation (SLT) involves
converting sign language videos into spoken language. Given
that glosses act as a mid-level representation that bridge the
visual signing and spoken language modalities, CSLR has been
employed as an intermediate step for sign language translation
(known as Sign2Gloss2Text), or for pre/joint training to enhance
visual representations [11, 12, 15, 16, 77, 78, 80, 81, 85, 86]. In
our work, we only use sign-level pseudo-glosses as an additional
input — rather than as auxiliary supervision — for translation.
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Translation output:

The Romans worshipped many gods, spirits and deities
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Figure 2. Method overview: The input prompt combines contextual cues, the background descriptions and previous sentences, with the information
from the current video sequence, specifically visual features and pseudo-glosses. Visual features corresponding to the signer {V'} are extracted using
a pre-trained Video-Swin model, which are projected to text space with a learnable mapping network. We obtain pseudo-glosses { P} by passing
the Video-Swin features through the pre-trained ISLR Classifier (*Video-Swin here denotes the layers except the last one of the ISLR model). The
background captions, obtained from an off-the-shelf image captioner, are summarised into a list of keywords, which we refer to as background
descriptions. During training, we randomly sample previous GT sentences and previous predictions, while during inference, the model uses its
previous prediction in an auto-regressive manner. In practice, we include prompts that instruct the model on sign language translation and describe each
input. We supervise the predicted translation output by comparing it against the ground truth, e.g., ‘As pagans, the Romans worshipped many gods and
spirits” in this example. Note that we do not use ground-truth glosses — they are displayed on the bottom right (e.g. roman, many...) only for illustration.

Given the restricted scalability of manual glosses, recent
research explores the gloss-free SLT setting [52, 76], utilising
larger datasets and enhanced pre-training techniques. For
instance, [2] and [68] train SLT systems from scratch using large-
scale signing data and robust visual features from a pre-trained
ISLR I3D backbone. [63] employs a similar approach, but fur-
ther pre-trains the visual encoder for sign spotting. [45] trains an
SLT system jointly with the visual backbone, leveraging concep-
tual anchor words. GFSLT [84] pre-trains their visual encoder
and text decoder through a CLIP-style contrastive loss [58] and
a masked self-supervised loss. [79] introduces a frame-wise
contrastive loss during visual pre-training to enhance feature
discrimination. VAP [35] pre-trains for more fine-grained visual
and textual token alignment. [82] collects large-scale noisy
multilingual YouTube SL data and jointly pre-trains for various
tasks such as SLT, subtitle-signing alignment, and text-to-text
translation. Similarly to these works, we turn to large-scale data
and extract strong visual features from an ISLR model.

Recent works also incorporate large-scale language
foundation models. For example, [65] inputs pseudo-glosses
directly into ChatGPT. SignL.LM [27] transforms sign language
videos into discrete tokens, which are then fed into a frozen
language model (LLaMA-7B-16bit [69]). [35, 60, 61, 70, 82]
all fine-tune a pre-trained TS model for SLT. [70] feeds in 3D
landmark embeddings, while [61] and [60] use visual features
from a BEVT-pre-trained [72] ISLR model and a MAE-
pretained video encoder, respectively. Sign2GPT [75] leverages
large-scale pre-trained vision (DINOv2 [54]) and language
(XGLM [46]) models, incorporating adapters (LoRA [32]) for
transfer to sign language. Similarly to these works, we make use

of a pre-trained LLM (Llama3 [24]) and fine-tune it for SLT.

The most closely related to our work is [64], that also makes
use of context. Specifically, their approach encodes the ground
truth previous subtitle, and spottings (automatic localised sign-
level annotations obtained by querying words from the ground
truth subtitle), as well as the signing video before passing them
to a transformer decoder to generate translations. Our work
differs on multiple fronts. Firstly, our method is fully automatic,
employing the predicted translation of the previous sentence
and pseudo-glosses from an ISLR model without access to any
ground truth. Second, we additionally incorporate context from
the background video. Lastly, we leverage a pre-trained LLM
as opposed to training a language decoder from scratch.

3. Sign Language Translation with Context

We begin this section by outlining our framework for SLT
using multifarious cues (Sec. 3.1). Next, we describe the
representation of each of the inputs including visual features,
pseudo-glosses, the background description, and the previous
sentence (Sec. 3.2). We then present the training strategy that
leverages a pre-trained LLM on this set of inputs (Sec. 3.3).

3.1. Framework overview

We introduce a new framework to perform SLT in an open-
vocabulary setting, basing our model on a pre-trained LLM.
As illustrated in Fig. 2, the proposed framework takes various
cues as input: (i) visual features representing the signing video,
(ii) pseudo-glosses as a (noisy) automatic transcription of signs,
(iii) background description as a contextual cue from the TV
show displayed behind the signer, and (iv) predicted translation
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of the previous sentence as another contextual cue, obtained
auto-regressively at inference. All modalities except the visual
features are in text form, which allows us to leverage the
powerful language generation capabilities of an LLM, trained
on diverse text corpora. To map the visual features into the
space of the LLM input tokens, we train a simple MLP-based
mapping network. Besides the above inputs, we provide the
LLM with an instruction describing the SLT task: “You are
an Al assistant designed to interpret a video of a sign language
signing sequence and translate it into English.” Finally, we add
single-sentence prompts in between the inputs by describing
each input type, while serving as a separator (see Appendix A.2
for the exact prompts). All the inputs are appended into a single
sequence and fed to the LLM.

3.2. Model inputs

In the following, we describe how we obtain each of the inputs.

Visual features. Following [56, 59], we employ a Video-Swin
model [47] pre-trained for ISLR (classification of isolated signs)
to obtain our visual features. Specifically, we utilise the recent
and strong model provided by [59], which is trained on the
BOBSL videos [2] for a vocabulary of 8,697 signs using the
automatic sign spottings from [51]. This ISLR model processes
short video clips of 16 frames (i.e. less than 1 second in 25
fps videos) to produce a single 768-dimensional embedding
vector. Specifically, this vector comes from spatio-temporal
averaging of the penultimate layer output of Video-Swin. To
capture fine-grained temporal details, we feed 16 consecutive
frames into the sign video encoder and apply a sliding window
with a stride of s to obtain features V., where F' represents
the number of visual features per sentence. For example,
when s=2, we have on average 56 features (i.e. 4.5 seconds) in
BOBSL sentences. Note that for experiments conducted on the
How?2Sign dataset [22], we further fine-tune the Video-Swin
model using the spotting annotations provided by [23] for a

vocabulary of 1,887 signs (see Appendix A.5 for further details).

Pseudo-glosses. To represent sign sequences in text form, we
apply the ISLR model mentioned above in a sliding window
manner to record the classification predictions, and obtain G
pseudo-glosses Pj.¢, representing a sequence of words (or
phrases) from the vocabulary of the classifier (e.g. 8k signs).
Note that these sign category predictions are noisy, often
including more labels than the number of signs occurring in
the sentence video, and many false positives, which we wish
to suppress via our LLM tuning. For example, Fig. 2 shows
an example of a homonym confusion between the manually
similar signs ‘study’ and ‘worship’. Our pseudo-glosses are
similar to [59], except we only apply repetition grouping, but do
not filter out low-confidence annotations with a threshold — this
allows the LLM to learn which ones are relevant. In contrast
to [59] that uses pseudo-glosses for supervision, we simply
employ them as additional inputs to our SLT model. Typically,
there are around 22 glosses per BOBSL sentence (which is less
than the number of visual features — 56 features on average).

Background description. To incorporate context from the
background footage, we crop out the signer from the full frame
and apply an image captioning model (BLIP2 [41]) to extract
textual descriptions of the scene behind the signer. Due to the
repetitive nature of captions across consecutive frames and
to reduce computational complexity, we extract captions at
frames sampled at 1 fps, leaving us with 5 captions per signing
sentence on average. Since similar scenes may persist even
over several seconds, resulting in nearly identical captions, we
collect all captions per sentence and keep only the list of unique
words (e.g. 14 words per signing sentence). We further remove
stopwords (as defined by [5]) to primarily feed keywords that
may provide context, and consequently help disambiguate
similar signs or identify pointings to the background screen.
This process is illustrated in Appendix A.3.

Previous sentence. We incorporate the previous sentence text
as an additional contextual cue. This refers to the sentence
that the signer signed leading up to the current one. During
training, we use either (i) the ground truth previous sentence or
(ii) predictions precomputed from a model trained without the
previous sentence cue (i.e. only visual features, pseudo-glosses,
and background descriptions). At test time the model uses
its own previous predictions as the previous sentence in an
auto-regressive manner.

3.3. Tuning the LLM with multifarious cues

Given the inputs described above, we design and train an
LLM-based model presented in the following.

Mapping network for visual features. All our inputs are
already in text form except the visual features, which need a
projection to map them into the text space, so that they can be
fed into the pre-trained LLM. To this end, we train a simple
mapping network, a 2-layer MLP with GELU [31] activation
in between, projecting the visual features (of dimensionality
768) to the dimensionality of the LLM input embeddings (i.e.
4,096). We note that we add 1D temporal convolution layer to
the mapping network when experimenting with the How2Sign
dataset [22] (see Appendix A.5).

Training. The trainable parameters of our framework are in
the mapping network and in the LLM. We randomly initialise
the weights of the mapping network. For the LLM, we employ
the open-source Llama3 model [24], specifically opting for
the Llama3-8B variant to balance performance and efficiency.
We tune the pre-trained LLM weights to adapt to our SLT task
and to our input structure. Specifically, we adopt LoRA [32]
fine-tuning (similarly to [75]) both to maintain computational
efficiency, and not to degrade the powerful language decoding
capability of the original model. We employ the standard
cross-entropy loss across the original LLM vocabulary of 128k
text tokens, using masked self-attention to predict the next
tokens. At inference, the model auto-regressively decodes a
sentence until an end-of-sentence token is reached.

Augmentations for textual modalities. During training, we
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apply several augmentations to our textual inputs to enhance
model robustness. First, we perform word dropping on three
textual cues (pseudo-glosses, the previous ground-truth sentence,
and the background description) by randomly omitting between
0% and 50% of the words in each cue. Second, we randomly
omit entire cues during training, each cue with 50% probability,
allowing the model to flexibly handle inference when some
modalities are missing, but also to make the model pay attention
to each cue. Third, as previously mentioned, for previous
sentences we make use of both ground-truth and predicted
translations during training. Again, we randomly sample with
a 50% probability between the two options. This strategy not
only serves as an augmentation, but also reduces the domain
gap between training and test time (where we do not have
access to ground-truth previous sentences). In practice, we
precompute the predicted previous sentences from a variant of
our model trained with all cues except the previous sentence.

Implementation details. We train on 4 H100 GPUs with a
batch size of 2 per GPU, utilising the Adam optimizer [37].
Training is performed in bfloat16 precision, with FlashAttention-
2 [21] adapted to optimise memory usage. The LLM decoder
(Llama3-8B model [24]) has a dimensionality 4,096 for its
text embeddings. The LLM is fine-tuned using LoRA with
a configuration of rank 4, alpha 16, and dropout 0.05. We
fine-tune only the query and value projectors in all attention
layers of the LLM. Since the text embedding layer has already
been pre-trained on a large corpus, we freeze it during training.
The training spans 10 epochs for BOBSL [2] and 15 epochs
for How2Sign [22] datasets, including a warmup phase for the
first 5 epochs with gradient clipping set to 1.0. The learning
rate is set to 0.0001. We use the HuggingFace library for the
pre-trained Llama3 models [24].

4. Experiments

In this section, we first present the datasets and a suite of
evaluation protocols used in our experiments (Sec. 4.1), as well
as baseline descriptions (Sec. 4.2). Next, we ablate various
components of our framework (Sec. 4.3). We then show our
improved translation performance compared to the state of the
art on two challenging open-vocabulary benchmarks (Sec. 4.4).
Finally, we illustrate qualitative results and discuss limitations
(Sec. 4.5). Further experiments can be found in Appendix B.

4.1. Data and evaluation protocols

BOBSL [2] comprises 1,500 hours of BSL-interpreted TV
broadcast footage across a wide range of genres, accompanied
by English subtitle sentences for the audio content. During
training, to achieve better signing-sentence alignments, we use
automatically signing-aligned sentences from [7] as described
in [2]. We filter sentences to those lasting 1-20 seconds
as in [59], resulting in 689k video-sentence training pairs,
corresponding to a vocabulary of 86K words. For evaluation,
we utilise the existing validation and test splits, SENT-VAL

and SENT-TEST from [2], where English sentences have
been manually aligned temporally to the continuous signing
video. SENT-VAL and SENT-TEST consist of 1,973 and 20,870
aligned sentences, respectively, covering vocabularies of 3,528
and 13,641 English words. We report ablation studies on the
validation set and present our final model results on the test set.

How2Sign [22] comprises 80 hours of ASL instructional
videos from 10 different topics, with temporally aligned
sentence language translations. There are 31,128 training, 1,741
validation and 2,322 test sentences, covering vocabularies of
15.7k, 3.2k, and 3.7k English words, respectively. We use the
validation set to tune hyperparameters, and report our final
model results on the test set.

Evaluation metrics. To evaluate translation performance
effectively, we use five standard evaluation metrics: (i) BLEU-4
(B4) [55], which corresponds to the geometric mean of the
precision scores of 4-grams, multiplied by a brevity penalty;
(i)) BLEURT (B-RT) [62], which is a trained metric (using
a regression model trained on ratings data) that can better
capture non-trivial semantic similarities between sentences;
(i) ROUGE-L (R-L) [44], which measures the longest
common subsequence between the prediction and ground truth
sequence; (iv) CIDEr [71], a captioning metric that captures
consensus of the prediction compared to ground truth by
calculating the weighted cosine similarity of TD-IDF scores
for various n-grams; and finally, (v) the Intersection over Union
(IoU) of prediction and ground truth token sets (using the Penn
Treebank tokenizer [5]). Similar to [51, 59], when computing
IoU, we lemmatise all the words, and do not penalise translated
words if they are synoyms to those in ground truth.

LLM Evaluation. Besides these standard metrics, we introduce
an LLM-based evaluation metric adapted from the CLAIR
framework [14] to assess sign language translations. We use the
publicly available APl of GPT-40o-mini from OpenAl [53],
prompting the model to generate a score from O to 5 for each
pair of translation and ground truth, where 5 indicates the best
match and 0 is the worst, along with a detailed reasoning for the
score. To calibrate the LLM, we provide 12 manually annotated
in-context examples. We instruct the LLM to focus on key
nouns and verbs and give less importance to pronouns. Further
details are provided in Appendix A.1.

4.2. Baselines

Here, we review baselines that we compare against, including
a common translation baseline (Albanie [2], Sincan [64]),
as well as two state-of-the-art SLT methods (GFSLT [84],
Sign2GPT [75]) according to PHOENIX14T [11, 38] and
CSL-Daily [85] benchmarks.

Albanie [2] and Sincan [64]. These approaches build on the
original SLT transformer work of Camgoz et al. [12], consisting
of a standard transformer encoder-decoder architecture trained
from scratch on pre-extracted video frame features. We compare
against the first SLT baseline on BOBSL established by Albanie
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et al. [2] using this framework. Specifically, they train the
I3D model for 2,281 sign vocabulary on BOBSL spottings,
and supervise the translation with automatically-aligned English
sentences filtered to a vocabulary of 9k common words. We also
compare with the baseline of Sincan et al. [64], which similarly
trains an encoder-decoder model and uses the same I3D features.

GFSLT [84]. This recent work introduces a pre-training phase
featuring two components: (i) a CLIP-style contrastive loss,
which directs the visual encoder to learn language-aligned visual
representations, and (ii) a masked self-supervised loss, which
promotes the ability of the text decoder to grasp sentence seman-
tics. In the subsequent stage, the pre-trained visual encoder and
text decoder are jointly fine-tuned within an encoder-decoder
translation framework, enabling the direct conversion of visual
representations into spoken sentences. We first reproduce this
method using the public codebase on PHOENIX14T (see
Appendix B.7), before adapting to the BOBSL dataset.

Sign2GPT [75]. This state-of-the-art work proposes an encoder-
decoder translation framework that leverages large-scale pre-
trained vision (DINOV2 [54]) and language (XGLM [46]) mod-
els, incorporating adapters (LoRA [32]) for transfer to sign lan-
guage. Additionally, a prototype-driven pre-training strategy is
introduced, which guides the visual encoder to learn sign repre-
sentations from spoken language sentences by filtering specific
parts of speech. We again use the public codebase for reproduc-
ing and applying on the BOBSL dataset. We report results both
without and with pre-training (denoted as w/PGP) as in [75].

Oracle: Sincan [64] (Vid+PrevST). This oracle baseline is a
multi-modal variant of Sincan [64], where the previous ground
truth sentence is also fed as additional context to the decoder
at both training and inference times.

Oracle: Sincan [64] (Vid+Prev®T +Spot). This baseline is
another oracle variant, where Spottings are also fed into the
decoder at both training and inference times. Spottings are
automatic sign annotations [51], obtained using ground truth
knowledge of the nearby English subtitles, i.e. given words
from the subtitle, by temporally localising them in video. We
note that our pseudo-glosses are different to Spottings as they
are predicted directly from the video, without access to the
corresponding English sentence translation.

4.3. Ablation study

In this section, we analyse our different design choices. We
present our results on the BOBSL validation set, SENT-VAL,
using BLEURT (B-RT), IoU and LLM evaluation metrics.

Combining different cues. In Tab. 1, we measure the contri-
bution of each input cue. With only visual features, the model
achieves baseline scores of 41.0 for B-RT, 16.6 for IoU, and 1.29
for LLM score. Adding pseudo-glosses (i.e. textual cues derived
from the current sign video) improves all metrics, highlighting
the benefit of text directly related to the signs. Incorporating pre-
vious sentences as a contextual cue further boosts performance,
and finally, adding background descriptions achieves the best

Vid PG Prev™ BG B-RT IoU LLM
v 41.0 16.6 1.29
v v 41.8 17.5 1.40
v v v 42.5 18.1 1.45
v v v v 43.5 18.8 1.56

Table 1. Combining different cues. We analyse on BOBSL SENT-
VAL, how different cues contribute to translation performance, when
added to the vanilla model inputting only the visual signing features
(Vid). We observe that pseudo-glosses (PG), background description
(BG), and predicted translation of the previous sentence (Prev” red) are
all complementary, as combining them achieves the best performance.

LLM Drop Drop Prev'™/ | B-RT ToU LLM
fine-tuning | words cue  PrevST
v 412 17.0 140
v v 414 174 141
v v v 4277 181 153
v v v v 435 188 1.56
v v v 406 167 127

Table 2. Augmentations and LLM fine-tuning. We ablate, on
BOBSL SENT-VAL, how different input augmentations and fine-tuning
the LLM decoder with LoRA [32] impact the performance. As
explained in Sec. 3.3, we randomly drop words within each cue, or
entirely drop a cue. Prev'™/Prev refers to randomly sampling either
the predicted or ground-truth translation for the previous sentence. We
observe that the combination of all input augmentations leads to the
best performance, and also show the benefits of LoRA fine-tuning.

results across all metrics. Overall, the final model, with all cues
combined, yields a significant improvement of 4+2.5 in B-RT,
+2.2 in IoU, and +0.27 in LLM score compared to the baseline,
confirming that there is additional relevant information found in
context, beyond the signing video, to help with the translation.
In Appendix A.1, we provide further statistics analysing the
distribution of the LLM evaluation scores, which align well
with other metrics in most cases, while being interpretable.

Effect of augmentations. We perform a series of ablations
in Tab. 2 regarding the input augmentations at training time:
(i) Drop words: randomly removing up to 50% of the words in
textual cues, (ii) Drop cue: randomly removing an entire cue
with a probability of 50%, and (iii) Prev""*?/Prev©T: sampling ei-
ther predicted or ground truth (GT) previous sentence with equal
probability. When Drop words augmentation is applied, we ob-
serve a slight performance increase. Adding Drop cue augmen-
tation provides an additional improvement (42.7 vs 41.4). We
hypothesise that these augmentations make the model less sensi-
tive to noise and less reliant on any particular textual cue. Finally,
combining Prev’"*/PrevST augmentation further boosts trans-
lation performance (43.5 vs 42.7), as it reduces the reliance on
previous GT sentences and better matches the inference setting.

LLM fine-tuning. In Tab. 2, we also examine a model variant
without fine-tuning the LLM, but only training the mapping
network with a frozen LLM. Comparing the last two rows, we
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Model ‘B4 B-RT R-L CIDEr IoU LLM

Model ‘ B4 B-RT R-L CIDEr IoU LLM
SSLT [82] t - 557 - - - -
SSVP-SLT [60] t 155 49.6 384 - - -
SSLT [82] - 340 - - - -
SSVP-SLT [60] 70 393 257 - - -
Fla-LLM [17] 9.7 - 278 - - -
VAP [35] 129 - 278 - - -
Ours (Vid) 11.8 441 31.1 933 261 139
Ours (Vid+PG) 123 447 319 978 274 155
Ours (Vid+PG+Prev™) | 12.7 453 325 1008 279 1.59

VIDEO ONLY
Albanie [2] 10 - 102 - - -
Sincan [64] 13 - 89 - - -
GFSLT [84] 06 277 74 43 52 005
Sign2GPT [75] 07 343 106 128 82 037
Sign2GPT (w/PGP) [75] t 09 352 114 161 87 049
Ours (Vid) 26 378 156 375 136 095
EXTRA CUES
Ours (Vid+Prev’™) 28 389 160 378 138 1.02
Ours (Vid+Prev'™+PG) 29 392 161 389 141 1.15
Ours (Vid+Prev"™+PG+BG) |33 403 169 419 148 1.20
ORACLE
Sincan [64] (Vid+Prev®T) 15 358 9.7 239 104 056
Ours (Vid+Prev©T) 33 405 173 428 148 123
Sincan [64] (Vid+PrevST +Spot) |29 37.0 124 410 125 0.80
Ours (Vid+PrevET+Spot) 65 459 240 825 255 1.69

Ours (Vid+Prev® +Spot+BG) |7.3 47.1 25.1 889 265 185

Table 3. Comparison to the state of the art on BOBSL SENT-TEST.
‘We compare our method to previous state-of-the-art works and surpass
their performance on a range of translation metrics. In the ORACLE
setting (bottom block), we compare fairly to approaches which use
(i) the previous ground truth sentence as context (Prev®"), as opposed
to the predicted previous sentence (Previ™), and (i) Spottings
(Spot) that are derived from the current ground truth sentence, as
opposed to sign-level pseudo-glosses (PG). For example, in ‘Ours
(Vid+PrevST+Spot+BG)’ we replace our pseudo-glosses with the
spottings that have access to ground truth sentence, to show a more
similar setting to [64]. T denotes scores that we obtained by training
methods of [75, 84] on BOBSL. Note that unlike previous experiments
on the validation set, this table reports on the test set.

observe that LoRA fine-tuning the decoder yields improvements
across all metrics (B-RT: +2.9, IoU: +2.1, and LLM score:
+0.29). We hypothesise that the improvement may partially be
due to distinct linguistic characteristics of signed and spoken
languages, but also due to adapting the LLM to our specific
input structure.

4.4. Comparison to the state of the art

BOBSL. We evaluate our model on the BOBSL test set, SENT-
TEST, using our full suite of evaluation metrics. As shown
in Tab. 3, our approach achieves a significant improvement
across all metrics compared to previous works. Notably, even
with only video input, our model surpasses state-of-the-art
methods such as GFSLT [84] and Sign2GPT [75]. Moreover,
incorporating additional cues leads to a steady performance
gain, with the full set of cues yielding a considerable boost (40.3
vs 37.8 B-RT). This highlights both the effectiveness of our
method, which leverages context and the increased challenge
posed by the BOBSL dataset (as opposed to PHOENIX14T
where [75, 84] were originally evaluated).

In the ORACLE setup (the bottom block of Tab. 3), we
compare to the setting of [64], where models have access to
ground truth previous sentence and spottings extracted from
the ground truth current sentence. When using the ground truth

Table 4. Comparison to the state of the art on How2Sign. We
compare our method to previous works that report on the How2Sign
test set, and obtain competitive performance. We also observe
advantages of incorporating additional cues from pseudo-glosses (PG)
and previous predicted sentence (Prev™). 1 denotes methods that
pre-train the SLT model on a larger ASL dataset (YouTube-ASL [70]
which covers 984 hours).

previous sentence at inference, our model outperforms [64] by a
large margin (40.5 vs 35.8 B-RT). When using both the ground
truth previous sentence and spottings (which are obtained with
access to current ground truth), we further increase the margin,
substantially outperforming their method (45.9 vs 37.0 B-RT).
Additionally, when integrating background descriptions (last
row), we observe a further performance gain.

How2Sign. Here, we demonstrate the generality of our method
by training on the How2Sign dataset (see Appendix A.5 for
details). In Tab. 4, we compare against the state of the art on
the test set, and also report variants of our model by gradually
adding more cues. We observe that adding the pseudo-glosses,
as well as the contextual cue of the previous translated sentence
boosts performance. We note that in this case, we do not use
background descriptions since How2Sign does not consist of
interpreted TV with an accompanying show. We find our best
model (Vid+PG+Prev™) achieves comparable performance
with the state-of-the-art method VAP [35] in terms of B4 and
attains a higher R-L score by nearly 5 points (32.5 vs 27.8). We
note that we include the numbers from [82] and [60] (denoted
with ), however, we do not compare to these as they train SLT
additionally on a large ASL corpus of 984 hours [70].

4.5. Qualitative analysis and limitations

We visually analyse how different input cues impact the
translation outputs by providing relevant information beyond
the signing video. In Fig. 3 (top left), a key focus of the sentence
— the word jellyfish — is not signed. In Fig. 3 (top right), the
sign for pronouns he and she is ambiguous. In such cases, the
model needs to utilise available context — much like a human
interpreter would — to accurately translate the sentence. By
effectively leveraging the background context in both cases, the
model is able to produce stronger translations. In other cases,
context can be used to further augment information obtained
from the video. This can be seen in Fig. 3 (middle left), where

8748



Image [ S

PG :to, one, fat, big, wave, world, British, break, diver

Prev : It looks like a lion’s mane, it’s about two and half half meters wide and 50 meters long, and it’s got 50
meters of tentacles hanging underneath it.

BG : man, holding, net, water, jclly(ish, floating, swimming

GT :1It’s one of the largest jellyfish in the world.

Vid < It’s one of the biggest animals in the worlds.

Vid+PG

Vid+PG+Prev

Vid+PG+Prev+BG: It’s one of the largest jellyfish in the world.

: They’re one of the largest animals on Earth.

: It’s the largest animal on Earth.

PG : good, new, tree, jungle, national, country, climate, garden, grow, pop, time, in, Christmas, use, when,
price, two, twenty, five
Prev : I've got an evening with the dark skies of the UK to look forward to.

BG : satellite, image, woman, green, dress, united, states, uk, new, forest, national, park, map, lymburts, showing, location
GT : The New Forest National park was created in 2005.

Vid : The new national forest was born in 2005.

Vid+PG : This is a new National Nature Reserve, established in 2005.
Vid+PG+Prev : The New jungle was set up in 2005.

Vid+PG+Prev+BG: The New Forest National Park was only established in 2005.
BG .

Image & Sign 2

PG : big, ready, render, go, see

Prev : Poisonous, no, but can be a bit spiky.

BG : two, men, cooking, beach, preparing, food, looking, tablet, computer, man, holding, fish
GT : Now, this is a big fish, so...

Vid : You're a big girl.

Vid+PG
Vid+PG+Prev
Vid+PG+Prev+BG: That’s a big fish.

: You’ve got a big garden.

: You’ve got too big a canvas.

BG
Image

PG : catch, level, two, look, surprise, check, win

Prev : Wow.

BG : bird, peeking, behind, leaves, peeks, woman, smiling, grass, camera
GT : She’s looking right at me.

Vid : He’s looking at me.

Vid+PG
Vid+PG+Prev
Vid+PG+Prev+BG: She looks right at me.

: He’s looking at me.

: And they’re looking right at me.

BG

Image Sign

PG :learn, greedy, crack, rhino, take, know, choose, commission, column, hook, work, turn, go, discharge,
elephant, pipe, mining, man

Prev : In just 80,000 years, they’ve been wiped out

BG : man, holding, knife, hand, standing, next, rhino

GT : This is a rhino horn... made into a dagger.

Vid : This is a coal cutter.

Vid+PG

Vid+PG+Prev

Vid+PG+Prev+BG: That’s a thino horn.

: This is a rhinoceros leg.

: A spearhead, a rhino horn.

BG
Image |

PG : get, have, next, after, earn

Prev : 16, 18 metres.

BG : group, rocks, ocean, near, mountain, large, rock, formation, background
GT : That’s taller than a house!

Vid : Oh, my goodness.

Vid+PG : Oh, my goodness.

Vid+PG+Prev : That’s high.

Vid+PG+Prev+BG: That is a lot of rock.

Figure 3. Qualitative analysis: We present visual examples to show how different cues affect the translation results. Starting with visual features,
we incrementally add pseudo-glosses (PG), the predicted previous sentence (Prev), and the background description (BG). We observe that the
previous sentence helps translation performance by providing further context (top left, bottom right). The background description also helps for
pronoun referencing (top right), place names (middle left), pointing gestures (middle right), and object referencing (bottom left). However, the
background can also in some cases hinder translation (bottom right). We refer to Sec. 4.5 for detailed comments.

using only the video, the model gains a general theme about
national forest but by leveraging the context, can precisely
generate New Forest National Park. Fig. 3 (middle right) shows
an example where the signer points to the background where the
rhino horn appears on screen, and the similar sign for elephant
that appears in pseudo-glosses is effectively suppressed.

However, we do observe several challenges as well:
(1) different cues may present conflicting information, and while
the model often learns to implicitly resolve such conflicts, there
are cases where it struggles (see Fig. 3, bottom right); (ii) our
model can struggle to discern the grammatical context of a
sentence, e.g. it sometimes cannot distinguish whether a given
sentence is a question or a statement; (iii) similarly the model
makes frequent mistakes by missing negations; (iv) our model
still faces difficulties with certain sign types, such as pointing
and fingerspelling, which are essential components of sign
language. These limitations highlight the complexity of sign
language translation and underscore the need for continued
research and development in the field. Additional qualitative
results are provided in Appendix C.

5. Conclusion

In this work, we show that leveraging contextual information
significantly enhances SLT performance in an open-vocabulary
setting.  Specifically, our framework utilises background
descriptions from a captioning model and predictions of
previous sentences, combined with pseudo-glosses and visual
features. Through an extensive ablation study, we analyse the
individual impact of each cue on sign language translation,
and benchmark our method against previous state-of-the-art ap-
proaches on the BOBSL dataset to demonstrate its effectiveness.
Despite the improvements of our approach, several challenges
remain. Background descriptions may not always complement
the translation, potentially introducing noise. Relying on
previous sentence predictions can lead to error accumulation,
where early mistakes propagate through subsequent sentences.
Additionally, pseudo-glosses are prone to false positives due
to homonyms, resulting in incorrect word choices. Addressing
these limitations would potentially improve the robustness and
real-world applicability of sign language translation systems.
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