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Figure 1: Our Fully-Controllable Talking Face Generation (FC-TFG) framework precisely reflects every facial expression of
the motion source while synchronising the lip shape with the input audio source. The key to our framework is to find the
canonical space, where every face has the same motion patterns, but has different identities.

ABSTRACT
The goal of this paper is to synthesise talking faces with controllable
facial motions. To achieve this goal, we propose two key ideas. The
first is to establish a canonical space where every face has the same
motion patterns but different identities. The second is to navigate
a multimodal motion space that only represents motion-related
features while eliminating identity information. To disentangle
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identity and motion, we introduce an orthogonality constraint be-
tween the two different latent spaces. From this, our method can
generate natural-looking talking faces with fully controllable facial
attributes and accurate lip synchronisation. Extensive experiments
demonstrate that our method achieves state-of-the-art results in
terms of both visual quality and lip-sync score. To the best of our
knowledge, we are the first to develop a talking face generation
framework that can accurately manifest full target facial motions
including lip, head pose, and eye movements in the generated video
without any additional supervision beyond RGB video with audio.

CCS CONCEPTS
• Information systems→Multimedia content creation; •Com-
puting methodologies→ Image processing.
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1 INTRODUCTION
Audio-driven talking face generation technology has numerous ap-
plications in the film and entertainment industry, including virtual
assistants, video conferencing, and dubbing. Its primary goal is to
generate animated faces that closely match the audio, creating more
engaging and interactive experiences for users. This technology
has the potential to revolutionise various industries by making
human-machine interactions more natural and immersive.

Previous literature on deep learning-based talking face synthesis
can be divided into two branches. The first branch [7, 9, 30, 33,
43, 47, 61, 64] only uses RGB modality as a form of supervision
to reconstruct a target video, while the second branch [2, 6, 8, 12,
22, 34, 42, 44, 45, 53, 63] leverages 2D or 3D structural informa-
tion to propagate more detailed supervision. These works have
made significant progress in generating natural-looking lip mo-
tions. Nevertheless, there is still a need for further development
in controlling head pose and refining facial attributes in greater
detail. Some methods [19, 27, 29, 50, 62] have the ability to generate
talking faces that closely resemble the movements and identities
of a target video. However, these methods still have limitations
that hinder their practical application. For instance, [62] is only
capable of altering the head pose, while [29] is incapable of creating
detailed facial components like eye gaze movements. [19, 27, 50] re-
quire the utilisation of facial keypoints to physically separate facial
components such as eyes and lips to create varied expressions.

In this paper, we propose a novel framework, Fully-Controllable
Talking Face Generation (FC-TFG), which aims to generate talking
faces that exactly copy full target motion including head pose,
eyebrows, eye blinks, and eye gaze movements. The key to our
method is preserving semantically meaningful features associated
with the identity of each person via navigation of the latent space
without requiring additional supervision such as facial keypoints.

Our work is raised from the fundamental question in talking face
generation: is it possible to completely disentangle facial motions
and facial identities in the latent space? Recent works [17, 21, 36, 48]
discover that semantically meaningful directions exist in the latent
space of Generative Adversarial Networks (GANs) by generating
face images with target facial attributes. Based on these findings,
[55] proposes a method that uses pre-defined orthogonal vectors
representing basic visual transformations needed for face anima-
tions. However, using the motion dictionary fails to manipulate
every detail of facial attributes such as eye gaze movements and lip
shape due to the limited granularity of motion vectors.

Unlike the previous methods, we grant a higher degree of free-
dom to the motion vectors rather than restricting them to be con-
structed by a few orthogonal vectors. To achieve this goal, we dis-
entangle the latent space of StyleGAN into two distinct subspaces
(as shown in Fig. 2): (1) a canonical space that can accommodate

a variety of facial identities while maintaining consistent facial at-
tributes, and (2) a multimodal motion space that contains exclusive
motion features acquired by fusing both audio and image sources
for transferring the target’s motion to the source face image. We
enforce that the multimodal motion codes are entirely disentan-
gled from the canonical features by introducing an orthogonality
constraint between the canonical space and the multimodal motion
space. As a result, the proposed FC-TFG framework manipulates the
latent code with a straightforward linear operation, which enables
our system to generate more controllable facial animations while
avoiding the unwanted entanglement of different features.

Furthermore, our framework is designed as a single encoder-
decoder network that utilises StyleGAN’s inversion network as
the encoder. By taking advantage of this architecture, FC-TFG can
effectively disentangle input images into canonical and motion
features using simple MLP layers added on top of the inversion
network, without significantly increasing the model complexity.

In summary, we make three key contributions: (1) We propose
a novel framework, Fully-Controllable Talking Face Generation
(FC-TFG), that generates talking faces with controllable target mo-
tion, including head pose, eyebrows, eye blinks, eye gaze, and lip
movements. (2) We separate the style latent space into a canonical
space that contains only person-specific characteristics and a multi-
modal motion space that contains person-agnostic motion features
encoded from driving pose video and audio source. By imposing
an orthogonality constraint on the correlation between the two
spaces, the proposed model produces detailed and controllable fa-
cial animation. (3) We demonstrate that the proposed FC-TFG is
highly effective in generating talking faces with sophisticated mo-
tion control, producing state-of-the-art results in both qualitative
and quantitative metrics. This success highlights the potential of
FC-TFG for a wide range of applications that demand elaborate
control over various facial features.

2 RELATEDWORKS
2.1 Audio-Driven Talking Face Generation.
The synthesis of speech-synchronised video portraits has been a
significant area of research in computer vision and graphics for
many years [5, 65]. Early works [15, 16] focus on the individual
speaker setting where a single model can generate various talking
faces corresponding to a single identity. Recently, the development
of deep learning has enabled the design of more generalised talking
face generation models [9, 26, 30, 33, 43, 61, 63] that produce talk-
ing faces by inputting identity conditions. However, these works
neglect head movements due to the challenge of disentangling head
poses from identity-related facial characteristics.

To produce talking face videos that have dynamic and natu-
ral movements, there exist studies that utilise landmarks or mesh
information [8, 12, 42, 45, 59]. For the similar purpose, several
works [3, 14, 23, 28, 53] adopt 3D information as intermediate rep-
resentations. Even with additional modalities, the proposed models
have certain limitations such as a lack of pose control and the
inability to render faces with visually pleasing quality under one-
shot conditions. Additionally, they suffer from severe performance
degradation in situations where the accuracy of landmarks is low,
especially in the wild.
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Figure 2: Overall framework. Our goal is to transfer the motions of the individual portrait via latent space exploration. The
overall pipeline is comprised of two steps. The first step involves transferring the code in the style latent space to the canonical
latent space, where each face has the same facial attributes, but distinct identities. In the second step, the multimodal motion
space is navigated, where each code contains only motion information and excludes identity information. The target motion
code is obtained by fusing image latent features and audio latent features. The canonical code and the motion code are then
combined using a linear operation, resulting in the final multimodal fused latent code. This fused latent code is used as input
to the decoder to synthesise attribute-controllable talking face videos.

Several recent works [4, 19, 27, 29, 50, 62] have demonstrated
that it is possible to create realistic talking faces that mimic differ-
ent movements and identities from a target video. However, there
are a number of limitations: [62] can only modify head pose, [29]
cannot animate eye gazes, and [19, 27, 50] require facial keypoints
to separate visual information for generating detailed expressions.

Unlike the previous works, our framework can generate a wide
range of target facial features including pose, lip, eye blink, and even
eye gaze without requiring extra annotations or structural informa-
tion. Our framework seeks a canonical space of a generator, where
each face has the same lip shape and pose but different identities.
This method enables the creation of more advanced facial repre-
sentations and simplifies the modeling of motion transfer between
source and target images by changing their motion relationship
from relative to absolute. Additionally, our model consistently pro-
duces high-quality videos under one-shot conditions.

2.2 Latent Space Editing.
Latent space editing involves intentionally modifying the gener-
ated output results by exploring meaningful directions in a high-
dimensional latent space of a pre-trained generator network. These
directions enable intuitive navigation that corresponds to desired
image manipulation. To manipulate the latent space, some ap-
proaches [17, 20, 37] directly propagate labeled supervision such
as facial attributes. Other works [32, 38, 49, 58] demonstrate the
potential of modifying the semantics of images without annotation.

A recent work [55] achieves success in applying latent space
editing technology to face reenactment task which aims to transfer
target motion to source image using RGB modality alone.

In contrast to finding directions that correspond to individual
facial movements in the latent space by using a single modality,
our work aims to disentangle the face identity and the complex
attributes composing face motions with multimodal features repre-
senting both visual and audio information.

3 METHOD
In this work, we propose a self-supervised approach for generating
realistic talking face videos by transferring complex motions such
as lip movements, head poses, eye gazes from a driving video to
a source identity image. Such motion transformation is modeled
via disentangled latent feature manipulation. The proposed frame-
work’s pipeline is illustrated in Fig. 2. The key to our framework
is two mapping operations: (1) Visual Space to Canonical Space,
(2) Visual/Audio Space to Multimodal Motion Space. Through the
first mapping, we can obtain canonical images that have the same
motion features and different identities. Meanwhile, the second
mapping yields motion vectors that enable us to transfer desired
motions onto canonical images. To ensure the disentanglement of
the two subspaces, we impose an orthogonality constraint. Based
on this process, our model is capable of generating natural-looking
talking face videos that mimic the full facial motions of the target.

We further provide an overall architecture of the proposed frame-
work in Fig. 3. Our framework includes a visual encoder 𝐸𝑖𝑛𝑣 , an
audio encoder 𝐸𝑎 , a generator 𝐺 , a discriminator 𝐷 , and a Latent
Fusion Network. We adopt a single shared visual encoder to ex-
tract both source and driving latent codes, denoted as 𝑧𝑠 and 𝑧𝑑 ,
respectively. The audio encoder extracts an additional audio la-
tent code, 𝑧𝑎 . The canonical encoder 𝐸𝑐𝑎𝑛 maps 𝑧𝑠 to a canonical
code, denoted as 𝑧𝑠→𝑐 , which is then combined with a motion code
𝑧𝑐→𝑑 obtained from the multimodal motion encoder 𝐸𝑚 . Since an
orthogonality constraint is imposed between 𝑧𝑠→𝑐 and 𝑧𝑐→𝑑 , the
motion transfer process is implemented by simply adding the two
latent codes. To ensure generated motions are natural, the fused
code 𝑧𝑠→𝑑 is passed through a Temporal Fusion layer before being
fed into the generator𝐺 . The generator, which is the StyleGAN2
decoder, allows for controlling the coarse-fine motion transfers.
Overall, the proposed method presents a promising approach for
generating high-quality talking face videos with controllability.
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Figure 3: Overall Architecture of FC-TFG. Our model consists of several components, including a visual encoder 𝐸𝑖𝑛𝑣 , an audio
encoder 𝐸𝑎 , a generator 𝐺 , a discriminator 𝐷 , and Latent Fusion Network. For compactness, we use a single visual encoder
to extract both a source latent code 𝑧𝑠 and a driving latent code 𝑧𝑑 . The audio encoder extracts an audio latent code 𝑧𝑎 . First,
we design a canonical encoder 𝐸𝑐𝑎𝑛 to map 𝑧𝑠 to a canonical space as 𝑧𝑠 → 𝑧𝑠→𝑐 , and then linearly combine it with a target
motion code 𝑧𝑐→𝑑 . This motion code is produced by a multimodal motion encoder 𝐸𝑚 , which combines 𝑧𝑑 and 𝑧𝑎 . To generate
natural motions, we pass the target code through a Temporal Fusion layer before feeding it into the generator𝐺 . The generated
video 𝑥𝑔 is compared to a driving video 𝑥𝑑 based on its visual and synchronisation quality. Note that we employ the StyleGAN2
generator as a decoder to control coarse-fine motion transfers, and 𝐿 is the number of modulation layers of the generator.
Therefore, each model (𝐸𝑐𝑎𝑛 and 𝐸𝑚) in Latent Fusion Network has 𝐿 independent weights.

3.1 Navigating Canonical Space
Our main target is to obtain a latent code 𝑧𝑠→𝑑 :𝑡∼Z∈R𝑁 that cap-
tures the intricate motion transformation from the source image
𝑥𝑠 to the 𝑡-th driving frame 𝑥𝑑 :𝑡 . From now on, we omit the tem-
poral index 𝑡 for better readability. Directly seeking 𝑧𝑠→𝑑 in the
latent space is an arduous task because the model must be able to
capture the subtle relative motion relationship between 𝑥𝑠 and 𝑥𝑑
while accurately representing the intricate facial attributes [55]. To
address this challenging issue, we adopt an innovative approach
proposed in [39, 40, 54] by assuming the existence of a canonical
image 𝑥𝑐 in a canonical space that has unified face-related motions
but individual identities. Consequently, we can acquire the target
mapping code 𝑧𝑠→𝑑 through a two-stage motion transfer process.

𝑧𝑠→𝑑 = 𝑧𝑠→𝑐 + 𝑧𝑐→𝑑 , (1)

where 𝑧𝑠→𝑐 and 𝑧𝑐→𝑑 indicate the transformation 𝑥𝑠 → 𝑥𝑐 and
𝑥𝑐 → 𝑥𝑑 respectively. Now, the mapping 𝑧𝑠→𝑑 can be solved with
an absolute motion transfer process, where both 𝑧𝑠→𝑐 and 𝑧𝑠→𝑑 do
not need to account for the motion relationship between them.

Unlike the aforementioned previous works [39, 40, 54], which
rely solely on the RGB modality to discover the canonical space,
our method leverages both RGB and audio modalities and indepen-
dently control the facial motions and lip movements simultaneously.

To design this motion transfer process effectively and intuitively,
we apply a simple linear operation that adds 𝑧𝑐→𝑑 directly to 𝑧𝑠→𝑐 .
Here, 𝑧𝑠→𝑐 is obtained by passing 𝑧𝑠 = 𝐸𝑖𝑛𝑣 (𝑥𝑠 ) through 𝐸𝑐𝑎𝑛
which is a 2-layer MLP, and 𝑧𝑐→𝑑 is learned by navigating motion
space that will be further explained in the following section.

3.2 Navigating Multimodal Motion Space
In order to generate natural head poses, lip motions, and facial
expressions simultaneously, 𝑧𝑐→𝑑 should successfully combine both
vision and audio information while only containing motion-related
features. To disentangle identity-related codes and motion-related
codes in 𝑁 -dimensional latent space, we inject a channel-wise
orthogonality constraint into each channel in 𝑧𝑠→𝑐 and 𝑧𝑐→𝑑 .

By strictly enforcing this constraint, the model induces that the
identity and motion codes do not interfere with each other when
they are combined for the transformation with the linear operation
as explained in Sec. 3.1. Finally, 𝑧𝑐→𝑑 can be obtained as follows:

𝑧𝑐→𝑑 = 𝐸𝑚 (𝐸𝑎 (𝑥𝑎) ⊕ 𝐸𝑖𝑛𝑣 (𝑥𝑑 )), (2)
where 𝐸𝑎 , 𝐸𝑚 , and 𝑥𝑎 denote audio encoder, motion encoder, and
audio input respectively. ⊕ operation indicates channel-wise con-
catenation. Note that as we solely traverse the latent space of the
pre-trained image decoder, the resulting 𝑧𝑠→𝑑 can retain seman-
tically meaningful features. The structure of the motion encoder
is a 3-layer MLP. Finally, to generate temporally consistent latent
features, we refine the acquired 𝑧𝑠→𝑑 by feeding it to the Temporal
Fusion layer, which consists of a single 1D convolutional layer.

3.3 Training Objectives
3.3.1 Orthogonality loss. To ensure effective disentangling of 𝑧𝑠→𝑐

and 𝑧𝑐→𝑑 , we extend the application of the orthogonality loss [58]
to each layer of the StyleGAN decoder while combining both audio
and video information. This approach enables us tomanipulate finer
movements, enhancing the overall capability of our framework. The
orthogonality loss function is expressed as follows:
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Controllable Motions Voxceleb2 MEAD
Method lip pose eye blink eye gaze SSIM↑ MS-SSIM↑ PSNR↑ LMD↓ LSE-C↑ SSIM↑ MS-SSIM↑ PSNR↑ LMD↓ LSE-C↑
Wav2Lip [33] ✓ ✗ ✗ ✗ 0.58 - 20.63 2.65 8.66 0.85 - 26.15 3.11 7.25

MakeItTalk [63] ✓ ✗ ✗ ✗ 0.55 0.45 16.94 3.28 3.83 0.78 0.78 23.6 3.55 4.35
Audio2Head [52] ✓ ✗ ✗ ✗ 0.51 0.40 15.98 3.58 5.79 0.67 0.59 19.57 4.85 5.38
PC-AVS [62] ✓ ✓ ✗ ✗ 0.57 0.60 17.37 2.25 5.82 0.66 0.7 19.95 2.93 5.19

FC-TFG (Ours) ✓ ✓ ✓ ✓ 0.69 0.77 21.22 1.58 8.46 0.84 0.89 26.19 2.46 5.51

Table 1: Quantitative Results. We compare ourmethod to four publicly available baselines on six different metrics. Our approach
outperforms the baseline methods in terms of both visual quality and lip synchronisation, while simultaneously controlling
diverse and detailed facial motions. We evaluate the generated samples using the original authors’ experimental settings,
ensuring a fair comparison between the different methods.

L𝑜𝑟𝑡ℎ𝑜 =
1
𝑁

∑︁
(𝑧𝑠→𝑐⊙𝑧𝑐→𝑑 ), (3)

where 𝑁 denotes the number of layers in decoder and ⊙ indicates
Hadamard product operation.

3.3.2 Synchronisation loss. To generate well-synchronised videos
𝑥𝑔 according to the input audio conditions, we adopt a sync loss
function, which leverages a pre-trained SyncNet [11] comprising
an audio encoder and a video encoder. Many works [28–30, 33, 53]
modify the SyncNet with altered objective functions, to further
improve lip synchronisation quality. We use the modified SyncNet
introduced in [29] to enhance our model’s lip representations.

The distance between the features of a video and its synchronised
audio, extracted from the pre-trained Syncnet model, should be
close to 0. From this, we minimise the following sync loss:

L𝑠𝑦𝑛𝑐 = 1 − cos
(
𝑓𝑣

(
𝑥𝑔
)
, 𝑓𝑎 (𝑥𝑎)

)
, (4)

where 𝑓𝑎 and 𝑓𝑣 denote the audio encoder and video encoder of
SyncNet respectively.

3.3.3 Identity loss. To preserve facial identity after motion trans-
formation, we apply an identity-based similarity loss [35] by em-
ploying a pre-trained face recognition network 𝐸𝑖𝑑 [13].

L𝑖𝑑 = 1 − cos
(
𝐸𝑖𝑑

(
𝑥𝑔
)
, 𝐸𝑖𝑑 (𝑥𝑑 )

)
. (5)

3.3.4 Reconstruction loss. For the reconstruction loss, we adopt
𝐿1 loss function that calculates the pixel-wise 𝐿1 distance between
the generated talking face image, 𝑥𝑔 , and the target image, 𝑥𝑑 . The
reconstruction loss can be calculated as follows:

L𝑟𝑒𝑐 =∥ 𝑥𝑔 − 𝑥𝑑 ∥1 . (6)

3.3.5 Perceptual loss. Using 𝐿1 reconstruction loss alone may re-
sult in blurry images or slight artifacts as it is a pixel-level loss. To
compensate for the smoothing effect caused by the reconstruction
loss L𝐿1, we add the Learned Perceptual Image Patch Similarity
(LPIPS) loss [60], which measures the perceptual similarity between
two images. LPIPS loss can be calculated as follows:

L𝐿𝑃𝐼𝑃𝑆 =
1
𝑁𝑓

𝑁𝑓∑︁
𝑖=1

∥ 𝜙 (𝑥𝑔)𝑖 − 𝜙 (𝑥𝑑 )𝑖 ∥2, (7)

where𝜙 is a pre-trained VGG19 [41] network, and𝑁𝑓 is the number
of feature maps.

3.3.6 Adversarial loss. We perform adversarial training with an im-
age discriminator,𝐷 , to improve the quality of the generated videos.
The architecture of 𝐷 is the same as StyleGAN2 [24] discriminator.
We use a non-saturating loss [18] for adversarial training, which
can be expressed as follows:

L𝐺𝐴𝑁 = min
𝐺

max
𝐷

(
E𝑥𝑑 [log(𝐷 (𝑥𝑑 ))]

+ E𝑧𝑓 [log(1 − 𝐷 (𝐺 (𝑧𝑓 ))]
)
.

(8)

3.3.7 Overall loss. Our total loss can be formulated as follows:

L𝑡𝑜𝑡𝑎𝑙 = 𝜆1L𝑜𝑟𝑡ℎ𝑜 + 𝜆2L𝑠𝑦𝑛𝑐 + 𝜆3L𝑖𝑑

+𝜆4L𝑟𝑒𝑐 + 𝜆5L𝐿𝑃𝐼𝑃𝑆 + 𝜆6L𝐺𝐴𝑁 ,
(9)

where hyperparameters 𝜆 are introduced to balance the scale of each
loss. Each 𝜆 controls the relative importance of its corresponding
loss term. Empirically, 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, and 𝜆6 are set to 1, 0.1, 0.5,
1, 1 and 0.1 respectively.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Dataset. Our framework is trained on VoxCeleb2 [10] and
evaluated on both VoxCeleb2 and MEAD [51]. VoxCeleb2 includes
6,112 different identities and over 1 million utterances. Of the total
identities, 5,994 are used for training, while the remaining identities
are reserved for testing. We follow the pre-processing procedure
proposed in [39] to ensure the consistent visual quality of videos.

To evaluate one-shot talking face generation performance, we
utilise the MEAD dataset, which comprises emotional faces fea-
turing more than 30 actors and eight emotion categories at three
intensity levels. To conduct the evaluation, we randomly choose
five speakers and five videos for each emotion category, and we only
use the frontal-view videos from this dataset for testing purposes.

4.1.2 Implementation Details. First of all, we pre-train a Style-
GAN2 [24] generator on the VoxCeleb2 dataset and then train
HyperStyle [1] inversion network with the pre-trained StyleGAN2
model. Specifically, we replace the e4e [46] encoder in the Hyper-
Style model with pSp [35] encoder. We focus on manipulating 8
specific layers of 14 layers in our generator, namely layers 1, 2, 3, 4,
7, 8, 9, and 10. Additionally, we only input the audio feature into 2
specific layers, layers 7 and 8. This allows us to effectively control
the style of the generated images based on the audio input.
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For the audio source, we downsample the audio to 16kHz, then
convert the downsampled audio to mel-spectrograms with a win-
dow size of 800, a hop length of 200, and 80 Mel filter banks. We
utilise a pre-trained audio encoder introduced in [33]. We use
Adam [25] optimiser for updating our model, with a learning rate of
1𝑒−4. Our framework is implemented on PyTorch [31] and trained
with eight 48GB A6000 GPUs. Note that the aforementioned pre-
trained models are fine-tuned during the training stage.

4.1.3 Comparison Methods. We compare our method with several
state-of-the-art talking face synthesis methods, which baselines are
currently available. Wav2Lip [33] employs pre-trained SyncNet
as a lip-sync discriminator to generate well-synchronised mouth
region of the source image.MakeItTalk [63] predicts landmarks
through 3D face models and generates both lip movements and
head motions simultaneously driven by audio. Audio2Head [52]
generates head motions by utilising a keypoint-based dense motion
field driven by audio. PC-AVS [62] is a pose-controllable talking
face generation model that controls head poses with driving videos.

4.2 Quantitative Results
4.2.1 Evaluation Metrics. We conduct quantitative evaluations
with various evaluation metrics that have previously been adopted
in the talking face generation field. To account for the accuracy
of mouth shapes and lip sync, we use Landmarks Distance (LMD)
around the mouths proposed in [8], and Lip Sync Error Confidence
(LSE-C) proposed in [11]. To compare the visual quality of the
generated videos, we calculate Structural Similarity Index Mea-
sure (SSIM) [56], Multi Scale Structural Similarity Index Measure
(MS-SSIM) [57], and Peak Signal-to-Noise Ratio (PSNR).

4.2.2 Controllable Motion Types. In order to assess the capabilities
of the baseline methods in generating realistic talking faces, we
compare the number of controllable motions for each method under
the target conditions in Table Table 1. Wav2Lip, MakeItTalk, and
Audio2Head rely solely on audio input to generate videos, resulting
in limited control over motion and pose. In particular, MakeItTalk,
and Audio2Head are capable of generating lip movements and
small head pose variations that are synchronised with the audio
conditions but are unable to produce more complex and diverse
motion patterns. On the other hand, PC-AVS and Ours have the
capacity to control head pose following the target pose conditions.
However, while PC-AVS is limited to controlling head pose, our
approach is effective for controlling all facial attributes, including
eye blinks and gazes, by exploring disentangled latent spaces.

4.2.3 Evaluation Results. We follow the evaluation protocol intro-
duced in [62]. Specifically, we select the first frame of each test
video to serve as a reference identity. We use the remaining frames
to determine the subject’s pose, facial expression, and lip shape.

As shown in Table 1, we compare our method with four baselines
on VoxCeleb2 and MEAD datasets. For VoxCeleb2 dataset, except
for LSE-C metric, our proposed method surpasses the previous
audio-driven and pose-controllable methods in all metrics while
manipulating detailed facial components. For MEAD dataset, our
framework shows the best performance on MS-SSIM, PSNR, and
LMD and comparable results to the Wav2Lip model in terms of
SSIM. Although the Wav2Lip model shows better performance

on LSE-C metric, the generated face shows significant distortions.
These results demonstrate that our model is capable to capture
detailed facial movements and generate visually pleasing results by
keeping semantically meaningful the latent space.

4.3 Qualitative Results
4.3.1 Fully-Controllable Talking Face Generation. We visually show
our qualitative results in Fig. 4.Wewould like to clarify thatWav2Lip
is a model that targets to change only the lip region. MakeItTalk
and Audio2Head are models that generate natural face motions
conditioned by only audio sources. For that reason, the generated
videos cannot replicate diverse facial motions in the driving videos.
PC-AVS focuses on synthesising the talking faces with control-
lable head pose variations. However, it fails to mimic the diving
source’s facial expressions such as eye blinks, eyebrows movements,
and eye gazes. On the other hand, our method can generate fully-
controllable talking faces by synthesising both head pose and facial
expressions that precisely follow the driving source videos.

In the left example of Fig. 4, our model captures the driving
source’s smiles and eye gaze, as indicated by the yellow arrows.
Similarly, in the right example, our model replicates detailed facial
movements such as lip shape, eyebrow position, forehead frowns,
and eye gazes. This high level of accuracy and detail allows our
method to generate realistic and expressive talking faces that closely
mimic the emotions and expressions of the driving source.

4.3.2 User Study. We assess the quality of the videos generated by
FC-TFG with a user study of 40 participants for their opinions on 20
videos. Specifically, we randomly collect reference images, driving
videos, and driving audios from VoxCeleb2 [10] test split. Subse-
quently, we create videos based on Wav2Lip [33], MakeItTalk [63],
Audio2Head [52], PC-AVS [62], and FC-TFG (Ours). We adopt the
widely used Mean Opinion Scores (MOS) as an evaluation metric
following [27, 62]. Each user gives evaluation scores from 1 to 5 for
the following aspects: (1) lip sync quality; (2) head movement natu-
ralness; and (3) video realness. The order of methods within each
video clip is randomly shuffled. Note that for a fair comparison with
fully audio-driven generation methods, we do not evaluate how
well the generated head poses are matched to the poses of the driv-
ing videos. As shown in Table 2, it is demonstrated that our method
generates talking face videos with higher lip synchronisation and
natural head movement, compared to the existing methods.

4.4 Ablation Study
4.4.1 Canonical Space. In Fig. 5 (a), we present the impressive out-
comes of mapping various identities to the canonical space where
each face has the same facial motion but different identities. The
effectiveness of our approach in preserving identity can be clearly
observed through the distinct and recognisable facial features of
each individual. Additionally, as shown in Fig. 5 (b), regardless
of the differences in the input images having the same identity,
our approach consistently produces similar canonical images that
accurately capture the individual’s distinct facial identity and de-
tailed features. These results further highlight the effectiveness
of our method in finding the canonical space that is essential for
transferring complex facial motions with a simple linear operation.
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Figure 4: Qualitative Results. We compare our method with several baselines listed in Table 1. Our approach outperforms all
the baselines in terms of generating precise head motion and facial expressions following the given conditions. Wave2Lip,
MakeItTalk, and Audio2Head fail to generate accurate head motion of the driving source videos. PC-AVS produces a similar
head pose with target motion but lacks in generating realistic facial expressions. On the other hand, our method successfully
generates every facial expression of the target motion while synchronising the lip with the input audio source.

Method Wav2Lip MakeItTalk Audio2Head PC-AVS FC-TFG(Ours)

Lip Sync Quality↑ 3.47 2.31 2.55 3.29 3.93

Head Movement Naturalness↑ 1.88 2.5 2.98 3.23 4.14

Overall Quality↑ 2.18 2.64 2.91 2.91 3.94

Table 2: User Study. We conduct a user study on generated videos with three aspects: lip synchronisation, the naturalness of
head movement, and overall video quality. The higher the better, with the value range of 1 to 5.

4.4.2 Ablations on Model Design. We conduct ablation studies on
our model choices for the Temporal Fusion layer and Discriminator
𝐷 in Table 3. We empirically observe that a flickering phenomenon
appears when using Long Short-Term Memory (LSTM) network
as our temporal fusion model. We suspect that this issue is caused
by our window size, which does not have any overlap along the
temporal dimension for faster inference. We solve the flickering
issue by replacing the LSTM layer with a 1D convolutional layer.

We investigate two different types of discriminators in this work;
(1) image discriminator, and (2) video discriminator. The former is

designed to evaluate the authenticity of a single image input, while
the latter is trained to classify a sequence of frames concatenated
along the channel dimension as either real or fake video.

As shown in Table 3, the lip sync confidence score is high when
we use the image discriminator. We believe that this is because
the image discriminator is designed to analyse the details of a
single image, which means that the generator must focus on spatial
information to deceive the discriminator. On the other hand, the
video discriminator examines the authenticity of multiple frames at
the same time, which requires the generator to focus on both spatial
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Figure 5: Samples in Canonical Space. We demonstrate how
well our model preserves identity by mapping various iden-
tities to the canonical space. In Fig. (a), we generate diverse
canonical image samples having different identities by feed-
ing each canonical code to our generator. In Fig. (b), we fur-
ther visualise every canonical image from a single video.
These results prove that our model is robust to maintain the
source identities and well-generalised to various identities.

Temporal Fusion 𝐷 Metrics

1D-Conv LSTM image video SSIM↑ MS-SSIM↑ PSNR↑ LMD↓ LSE-C↑
✓ ✓ 0.66 0.75 20.78 1.79 8.66

✓ ✓ 0.67 0.75 20.64 1.73 7.9

✓ ✓ 0.66 0.75 20.72 1.98 8.04

✓ ✓ 0.69 0.77 21.22 1.58 8.46

Table 3: Ablations on Model Design. We report performance
results based on our different model choices. We observe
that the highest performance is achieved when using a 1D
convolutional layer for the Temporal Fusion layer and an
image discriminator for the discriminator.

and temporal information. Based on our analysis, we conclude that
the image discriminator is more suitable for our intended purpose
of accurately generating lip shape, which is a spatially small region.

4.4.3 Orthogonality Constraint Effectiveness. We provide further
insight into the efficacy of the orthogonality constraint by visually
analysing samples in the canonical space. As depicted in Fig. 6,
the canonical space of the model trained without orthogonality
constraint contains diverse head poses, indicating the potential
lack of disentanglement between identity and motion information.
Additionally, when cosine similarity loss is used as the orthogonal-
ity constraint, the model produces even more blurry images. On
the contrary, the canonical space of FC-TFG trained with 𝐿𝑜𝑟𝑡ℎ𝑜
in Eqn. 3 contains more unified facial motions, indicating a suc-
cessful disentanglement of identity and motion information in the
latent space. The quantitative results according to the different
orthogonality constraints are reported in Table 4. These results

Orthogonal Metrics
Constraint SSIM↑ MS-SSIM↑ PSNR↑ LMD↓ LSE-C↑

✗ 0.67 0.76 20.88 1.70 8.27
Cosine 0.67 0.75 21 2.11 8.38
𝐿𝑜𝑟𝑡ℎ𝑜 0.69 0.77 21.22 1.58 8.46

Table 4: Ablations on Orthogonality Loss. We ablate the effec-
tiveness of the orthogonality constraint. The model trained
with the proposed loss 𝐿𝑜𝑟𝑡ℎ𝑜 shows the best performance.

w/o
ℒ!"#$!

FC-TFG
(Ours)

Cosine
Loss 

Identity
Reference

Figure 6: Analysis on the effectiveness of Orthogonality Con-
straint. Our model effectively disentangles the identity and
motion information by enforcing orthogonality between the
canonical space and the multimodal motion space. This is
demonstrated by the cohesive and consistent motion pat-
terns in the canonical space, which is not achieved in the
models either trained without the orthogonality constraint
or trained with other kinds of constraint such as cosine loss.

strongly suggest that the orthogonality constraint plays a crucial
role in achieving high-quality outcomes.

5 CONCLUSION
In this work, we propose a framework named Fully-Controllable
Talking Face Generation (FC-TFG), which can generate every facial
expression while synchronising lip movements with the input audio
sources. Our framework is carefully designed to disentangle the
latent space of StyleGAN into the canonical space and the multi-
modal motion space. This disentanglement enables the generation
of more detailed and controllable facial animations while avoiding
the unwanted mixing of different types of conditions. With var-
ious experiments, we prove that the proposed method is highly
effective, achieving state-of-the-art results in both qualitative and
quantitative evaluations of generated video quality. The potential
of FC-TFG for a wide range of applications that demand precise con-
trol over various facial features is significant, such as virtual reality,
and augmented reality. It could also be useful for creating person-
alised digital avatars or virtual assistants that can communicate
and interact with users in a more natural and realistic manner.
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