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ABSTRACT
In the field of speaker verification, session or channel variability
poses a significant challenge. While many contemporary methods
aim to disentangle session information from speaker embeddings,
we introduce a novel approach using an additional embedding to
represent the session information. This is achieved by training an
auxiliary network appended to the speaker embedding extractor
which remains fixed in this training process. This results in two
similarity scores: one for the speakers information and one for the
session information. The latter score acts as a compensator for
the former that might be skewed due to session variations. Our
extensive experiments demonstrate that session information can
be effectively compensated without retraining of the embedding
extractor.

Index Terms— Speaker verification, speaker embedding,
session information

1. INTRODUCTION

In the evolving domain of speech processing, speaker verification
plays a crucial role, having various real-world applications ranging
from voice-based security systems to personalised speech assis-
tants. Central to robust speaker verification is the extraction of
speaker embeddings, which encapsulate the unique characteristics
of an individual’s voice [1–3]. However, these embeddings are
susceptible to extraneous information, largely influenced from
the recording environment. Variabilities in recording devices,
ambient noise, room acoustics, and other session-related factors
can significantly affect the accuracy of these embeddings, creating
misleading similarities even among distinct speakers in similar
recording situations [4,5].

Historically, when the i-vector approach was prevalent in the
speaker embedding space, techniques such as linear discrimi-
nant analysis (LDA) and within-class covariance normalization
(WCCN) were employed as countermeasures to diminish these
unexpected session similarities [1,6]. With the advances of deep
learning and its application to this domain, efforts have shifted
towards disentangling speaker information from session informa-
tion directly within the embedding [5, 7, 8]. Various strategies
have been studied in this direction – while some leverage the

adversarial approach, others design novel loss functions to achieve
the same goal [9]. However, a clear problem with these methods
is that while trying to separate session-related information from
speaker-specific details, important characteristics of the speaker
might be lost. In simpler terms, in the process of removing
unwanted session information, one might also unintentionally
remove features that help identify the speaker.

In light of these challenges, this paper introduces an alternative
approach. Instead of disentangling session-related information
from the embedding, we present a framework to compensate
for it at the score level. Our methodology capitalises on the use
of an auxiliary network, seamlessly appended to the original
speaker embedding extractor. The auxiliary network is designed
to represent session information found within speaker embeddings.
A key facet of our framework ensures that the primary speaker em-
bedding extractor remains fixed during this process. Consequently,
our system yields a twofold output; a similarity score reflecting
speaker characteristics and another gauging session attributes.
The latter, acting as a compensator, has the potential to rectify
any discrepancies in the speaker score induced by analogous or
differing session conditions. Our empirical evaluations, spanning
various model architectures and evaluation configurations, under-
score the feasibility of session compensation without the need for
retraining the original embedding extractor.

In the field of speaker verification, various score calibration
methods have been explored, including those using quality mea-
sure functions and embedding magnitude [10,11]. Our proposed
technique in this paper, however, stands out for two main reasons.
First, it introduces a unique training method that deals solely with
session information, allowing the use of existing embeddings
without any modification. Second, this approach is designed
to compensate for various environmental factors such as noise,
channel differences, and recording conditions. Thus, our method
offers easy integration with existing systems and the capability
to adapt to various environments simultaneously.

The paper is organised as follows. Section 2 introduces
the proposed framework. Experiments and result analysis are
presented in Section 3, followed by conclusion in Section 4.



Fig. 1. The session compensating framework for speaker verification. (a) Illustration of the session network. The network receives
speaker embeddings and, via multiple pre-norm residual blocks, produces session embeddings. (b) Outline of the speaker verification
process within the proposed framework: Upon receiving two utterances, the system extracts corresponding session and speaker
embeddings. Similarities between these embeddings are then calculated. The computed similarities are subsequently input into the
Q-stack classifier to determine whether the two utterances originate from a same speaker or two distinct speakers.

2. FRAMEWORK
FOR SESSION VARIABILITY COMPENSATION

In this section, we present a novel framework specifically de-
signed to address and compensate for session variability in speaker
verification tasks.

2.1. Speaker Embedding Extraction

For this study, we leverage pre-trained embedding extractors,
drawing from methods that have proven efficacy in conventional
recipes. Specifically, we have evaluated three models that rep-
resent a diverse cross-section of state-of-the-art architectures.
These models are ECAPA-TDNN [12], RawNet3 [13], and
MFA-Conformer-based speaker embedding extractors [14,15].

2.2. Session Embedding Extraction

Within the domain of speaker verification, speaker embeddings
efficiently capture the intrinsic attributes of a speaker’s speech.
However, these embeddings may also contain subtle informa-
tion specific to the recording session, like background noise or
recording device characteristics. Recognising the need to isolate
such session-specific nuances from the core speaker features, we
introduce the session network.

Network architecture. This network is attached to the speaker
embedding network. Simplistically composed of several fully-
connected layers, drop-out and GELU activation [16], the session
network’s primary role is to extract session information contained
within the speaker embedding. Figure 1-(a) shows the detailed
composition of the session network. It’s designed to differentiate
between the inherent speaker characteristics and the variabilities
introduced by different recording sessions.

Training strategy. For effective extraction of session information,

it’s paramount to train the network using a specially designed loss
function. In addition, utilising datasets such as VoxCelebs [17,18],
which offers multiple sessions for individual speakers, is essential.
For the session network, the training data comprises pairs – both
positive and negative – drawn from the VoxCeleb datasets. These
pairs are constructed by pairing two utterances. First, utterances
for a positive pair stem from a same session and a same speaker,
with identical augmentation techniques applied. This setup ensures
that any discrepancy in the embeddings is predominantly due to
session variations. Conversely, a negative pair includes two utter-
ances from the same speaker but from different sessions, with dis-
tinct augmentations applied. This highlights the impact of session
differences manifested within speaker embeddings. To elaborate
further, consider a speaker denoted as i, randomly selected from
our dataset. For our training, we aim to consider the speaker’s
utterances across two distinct sessions. Thus, for each chosen
session, two random utterances are selected. This process gives
us a notation, ui,s,u|s∈{0,1},u∈{0,1}, where i stands for the se-
lected speaker, s denotes the session and u indicates the utterance.
Now, for a definition of the loss function, we consider all possible
combinations of sessions (s) and utterances (u). Our objective is
to compute a loss value, L, which would measure the difference or
similarity between these combinations. This loss is determined as:

L=

{
1−S(se(ui,s1,u1),se(ui,s2,u2)), if s1==s2

S(se(ui,s1,u1),se(ui,s2,u2)), otherwise
(1)

where S(·,·) is a function indicating cosine similarity between
two embeddings and se(u) is session embedding from utterance
u. It’s worth noting that we do not consider pairs from different
speakers while training the session network, ensuring the focus
remains strictly on session variability. The session information
is directly inferred from the video ID in the VoxCeleb datasets.
In our context, two utterances are considered to be from the same
session if they originate from an identical video.



Fig. 2. Variation in speaker verification performance on the orig-
inal VoxCeleb1 test set for three distinct embedding extractors.
The graph shows the influence of session similarity(sess)’s weight
w on each extractor’s performance. A clear trend emerges, high-
lighting the role of session similarity as a compensatory across all
models evaluated.

2.3. Speaker Verification Using the Proposed Framework

In this section, we present our speaker verification procedure
underpinned by our novel framework. In our study, we consider
each verification trial to be constructed from a pair of utterances.
From each of these utterances, two types of embeddings can be
extracted: one that represents the characteristics of the speaker (the
speaker embedding) and another that embodies the particularities
of the recording session (the session embedding).

Score-level compensator. Once we have these embeddings, we
can measure how similar they are. We compare the speaker em-
beddings from both utterances to get a “speaker similarity” score.
This value essentially offers a metric that quantifies how alike the
two utterances are, based on the characteristics of the speakers. On
a parallel track, the session similarity is determined through the
cosine similarity of the two session embeddings. This similarity
shows how alike the two recordings are, based just on details from
the recording session. Having obtained these similarities, the final
step is to integrate them into a composite score that would be
instrumental for verification. The formula we propose for this is:

score=spk−w∗sess, (2)

where spk and sess indicate speaker and session similarities, re-
spectively, and w stands as a weighting factor for the session
similarity. By subtracting a weighted session similarity from
the speaker similarity, we aim to rectify any biases present in the
speaker similarity attributed to session-related variations. Thus, the
goal is to compensate for the session-induced biases, ensuring that
the speaker’s inherent characteristics shine through without the un-
expected influence of session-specific attributes. To discern the im-

pact of the session similarity on speaker verification, we carried out
simple experiments utilising embeddings derived from the three
embedding extractors. The focal point of this experiment was to
adjust a weight value, and subsequently, observe how it influenced
the performance of speaker verification. We conducted our tests
using the VoxCeleb1 original test set, and the results are shown
in Figure 2. The results reveal that simple action of subtracting
the session similarity can reduce the error in speaker verification.

Q-stack-based compensator. Nonetheless, there exists a limi-
tation to the above approach. The foundational premise of the
approach is predicated on the assumption that the correlation be-
tween the speaker and session similarities is linear. However, in
practical scenarios, this relationship might exhibit a more complex
nature, suggesting the necessity for a sophisticated approach to
accurately compensate for these interactions. To address this, we
utilised an additional classifier which takes in both the speaker
and session similarities and makes a binary decision. Essentially,
it determines whether the two utterances originate from the same
speaker or not. This new approach allows us to capture the non-
linear relationship between the two similarities. The concept of
this classifier is derived from a framework termed “Q-stack” [19].
The Q-stack classifier is employed to process two separate sets
of similarities derived from two utterances, with the primary ob-
jective of deciding whether these utterances are from an identical
speaker or not. The operation of the Q-stack-based framework
is as follows. First, it takes in 200 similarities; half represents
speaker similarities, and the other half stands for session similari-
ties. These specific quantities originate from the well-known Vox-
Celeb trainer’s recipe 1. This procedure extracts 10 embeddings
from an individual utterance through a sliding window technique.
Consequently, when comparing a pair of utterances, the possible
combination results in 10×10 similarities, leading to a combined
total of 100 similarities for each type of embedding. For a more
detailed architecture of the Q-stack, it is structured with three fully-
connected layers, drop-out, and non-linear activation. These layers
consist of 400 nodes, except the output layer with only two nodes.
All hidden nodes are activated by leaky ReLU function for non-
linearity. Figure 1-(b) shows the overall operation of the proposed
framework, including the structure of the Q-stack classifier.

3. EXPERIMENTS

3.1. Implementation details

For the evaluation of the proposed system, various datasets
and models were employed. We selected multiple datasets for
the training process: VoxCeleb1&2 [18, 20], VOiCES [21],
CommonVoice [22] and telephone speeches from NIST SRE
corpora. ECAPA-TDNN and RawNet3 models were trained
using the VoxCeleb1&2 datasets. The Conformer-based system
was trained leveraging the VoxCeleb1&2, NIST SRE 2004, 2006,
and 2008 [23, 24], and CommonVoice datasets. The Q-stack

1https://github.com/clovaai/voxceleb_trainer

https://github.com/clovaai/voxceleb_trainer


Table 1. A comparison of the performances using different models and evaluation sets. “Baseline” shows results from the usual speaker
embedding. “Score comp” shows the outcomes when session variability is compensated at the score level. “Q-stack” denotes results
when session variability is addressed using session embedding complemented by an additional classifier.

EER(%) RawNet3 ECAPA-TDNN Conformer
Vox1-O N-SRE VN-Mix VC-Mix Vox1-O N-SRE VN-Mix VC-Mix Vox1-O N-SRE VN-Mix VC-Mix

Baseline 1.11 13.52 10.51 3.32 0.77 11.29 6.90 2.17 0.70 8.70 3.48 1.99
Score comp 1.12 13.33 8.91 3.05 0.75 10.92 5.84 2.02 0.69 8.58 3.43 1.88
Q-stack 1.06 12.98 7.34 3.03 0.71 10.64 4.22 1.98 0.65 8.39 3.34 1.51

Table 2. A comparison of the effect of the ensemble methods.
“Single best” shows the top-performing model on its own. “Av-
eraging scores” displays results when we combine scores from
several models the usual way. “Proposed” gives results using our
new ensemble method with Q-stack.

EER(%) Vox1-O N-SRE VN-Mix VC-Mix
Single best 0.70 8.70 3.48 1.99
Averaging scores 0.63 8.88 5.16 1.97
Proposed 0.56 8.14 3.17 1.44

system, distinctively, was trained on the test set of the VOiCES
dataset. For augmentation, we use reverberations and noises from
simulated RIRs and MUSAN datasets [25, 26]. Augmentation
configurations follow that of [27].

3.2. Evaluation protocol

We evaluated performance using the VoxCeleb1 original test set
(Vox1-O), 10sec-10sec protocol of NIST SRE 2010 evaluation (N-
SRE) [28], and unique combined datasets. The initial evaluation
of our system was carried out using two primary datasets: Vox1-O
and N-SRE. These datasets contain audio data from varied sources
and were chosen because they internally include session variability.
To further evaluation, we introduced two custom datasets, VN-
Mix and VC-Mix, crafted to test the systems’ performance under
challenging scenarios. First, VN-Mix (VoxCeleb and NIST) was
composed of trials from Vox1-O and N-SRE. A notable aspect
of this combination is the intrinsic domain difference between
the two datasets. Specifically, N-SRE includes telephone speech
while Vox1-O contains YouTube video clips. Given this contrast
in source domains, it’s hypothesised that a similarity bias might
arise due to these inherent differences. For VC-Mix (VoxCeleb
and VoxConverse), we combined positive pairs from Vox1-O with
negative pairs from the “single” protocol of VoxConverse [29], as
referenced in [30]. The positive pairs from Vox1-O comprise utter-
ances from multiple sessions. In contrast, the negative pairs from
VoxConverse are restricted to a singular session. This composition
suggests the challenge, presenting both hard positive and negative
pairs. In simple words, VC-Mix combines two types of pairs:
one with the same speaker from different sessions and another
with different speakers from a single session. The structure of
VC-Mix was inspired by the dataset used in the VoxSRC 2022
challenge [31]. All telephone speech is up-sampled from 8kHz
to 16kHz. The performance metric used to compare the models’

performance was the well-known equal error rate (EER).

3.3. Comparison with single system

In Table 1, we presented a comprehensive comparison of the base-
line system against our proposed systems across varied models
and evaluation datasets. A key observation was the robustness
and enhancement in EER offered by the proposed systems, which
use session embeddings. Focusing on the “score comp” row, the
results show the positive impact of session compensation using
equation (2). The value of the weighting factor w was determined
using test trials from the VOiCES dataset. Furthermore, the
“Q-stack” row introduces further improvement from an additional
classifier. This suggests that the classifier helps model a non-linear
relationship between session and speaker similarities.

3.4. Comparison with ensemble system

Table 2 shows the impact of different ensemble techniques on
model performance. A conventional ensemble averages multiple
scores from various models. However, with our Q-stack system,
this ensemble is more sophisticated. Instead of merely averaging,
it inputs scores from different models in unison. In particular,
we increased the number of input scores from 200 to 600 when
combining the three models. The experimental results highlighted
the superior performance of the Q-stack-based ensemble, espe-
cially on the N-SRE dataset and the VN-Mix containing the
corresponding dataset. Conventional ensemble techniques, on the
other hand, exhibited a decrement in performance on the N-SRE
dataset, attributed to some models’ limited exposure to telephone
speech during their training.

4. CONCLUSION

In the domain of speaker verification, session variability is a
well-known factor that can lead to performance degradation.
Traditional methods often aim to modify or enhance the speaker
embedding to handle this issue. Contrary to this, we suggest a
novel approach; rather than adjusting the speaker embedding, we
propose that session information should be treated as a separate
entity. Comprehensive experiments, spanning a variety of models
and datasets, demonstrate that the proposed method not only
mitigates the effects of session variability but also has valuable
implications for model ensemble and score calibration.
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