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Figure 1: AlignDiT aims to generate natural speech that is (1) accurately aligned with the given text, (2) temporally synchronized
with the input video, and (3) acoustically consistent with the reference speech. This versatile system has a broad range of
applications, including (a) Automated dialogue replacement, (b) Video-to-Speech synthesis, and (c) Visual Forced Alignment.

Abstract

In this paper, we address the task of multimodal-to-speech gen-
eration, which aims to synthesize high-quality speech from mul-
tiple input modalities: text, video, and reference audio. This task
has gained increasing attention due to its wide range of applica-
tions, such as film production, dubbing, and virtual avatars. Despite
recent progress, existing methods still suffer from limitations in
speech intelligibility, audio-video synchronization, speech natural-
ness, and voice similarity to the reference speaker. To address these
challenges, we propose AlignDiT, a multimodal Aligned Diffusion
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Transformer that generates accurate, synchronized, and natural-
sounding speech from aligned multimodal inputs. Built upon the
in-context learning capability of the DiT architecture, AlignDiT
explores three effective strategies to align multimodal representa-
tions. Furthermore, we introduce a novel multimodal classifier-free
guidance mechanism that allows the model to adaptively balance
information from each modality during speech synthesis. Exten-
sive experiments demonstrate that AlignDiT significantly outper-
forms existing methods across multiple benchmarks in terms of
quality, synchronization, and speaker similarity. Moreover, Align-
DiT exhibits strong generalization capability across various multi-
modal tasks, such as video-to-speech synthesis and visual forced
alignment, consistently achieving state-of-the-art performance. The
demo page is available at https://mm.kaist.ac.kr/projects/AlignDiT.
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1 Introduction

Human communication involves the exchange of information through
spoken language, which serves as a fundamental means of interac-
tion between individuals [19, 28, 50]. It naturally generates multi-
modal signals that convey both linguistic content and paralinguistic
cues. Among them, audio, video, and text are three key modali-
ties widely utilized in speech and language processing. The audio
modality delivers the sound signal that carries phonetic content,
prosodic features such as intonation and rhythm, as well as speaker-
specific characteristics. The video modality captures lip movements,
facial expressions, and non-verbal signals that are synchronized
with the audio. Text, while not directly observable in the physical
world, serves as a symbolic and discrete representation of the lin-
guistic content, monotonically aligned with audio and video over
time [58, 64]. Together, these modalities complement one another,
offering a comprehensive view of human verbal communication.

Cross-modal generation tasks, where one modality is synthe-
sized or inferred from others, have been extensively studied to
support accessibility and multimodal interaction. Typical exam-
ples include text-to-speech synthesis (TTS) [6, 8, 51, 63], automatic
speech recognition (ASR) [4, 23, 62, 65], lip reading [46, 47, 67, 76],
video-to-speech synthesis [10, 34, 52, 75], and talking face gener-
ation [56, 61, 72]. While many of these tasks focus on converting
a single input modality into another, incorporating multiple input
modalities can lead to more accurate and robust generation, as
different modalities provide complementary information. For ex-
ample, audio-visual speech recognition (AVSR) [1, 13, 29] improves
transcription accuracy by leveraging both audio and video inputs,
especially under noisy conditions.

This motivates generating speech audio conditioned on both
video and text inputs, where visual cues from lip movements and
explicit linguistic content complement each other. A representa-
tive application of this task is Automated Dialogue Replacement
(ADR) [15, 16], widely used in film and television post-production.
During this process, actors’ lines are re-recorded to improve audio
quality while ensuring synchronization with the video, especially
when original recordings are affected by background noise or chal-
lenging recording conditions. Building on recent advances in deep
learning based speech generative models, prior studies have ex-
plored generating speech from silent video, transcriptions, and short
reference audio clips. Despite their potential, existing multimodal-
to-speech generation approaches face three key challenges. First,
they often struggle to generate natural and intelligible speech due to
limited modeling capacity and reliance on limited datasets. Second,
they are not robust when one or more input modalities are missing
or corrupted, as they lack mechanisms to adjust the importance
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of each modality. Third, many methods depend on external forced
aligners or duration predictors for synchronization, increasing su-
pervision costs and risks propagating alignment errors.

To address these challenges, we propose AlignDiT, a multimodal
aligned diffusion transformer architecture designed for natural and
synchronized speech generation. AlignDiT jointly models video,
text, and reference audio within a unified framework, implicitly
learning cross-modal alignments without relying on explicit du-
ration predictors or external forced aligners. By framing speech
synthesis as a conditional generative diffusion process, AlignDiT
naturally aligns the generated speech with visual lip movements,
linguistic content, and speaker-specific voice characteristics. We
conduct extensive experiments using both subjective and objec-
tive evaluation metrics. The results clearly show that AlignDiT
significantly outperforms existing ADR methods across all crite-
ria, including speech intelligibility, synchronization accuracy, and
speaker similarity. Furthermore, AlignDiT effectively generalizes
to related multimodal tasks, such as video-to-speech synthesis and
visual forced alignment, highlighting its robustness and flexibility
across diverse multimodal scenarios, as demonstrated in Fig. 1.

Our major contributions can be summarized as follows:

e We propose AlignDiT, a model that jointly leverages video,
text, and reference audio to synthesize accurate, high-quality,
and synchronized speech for the ADR task.

e We conduct extensive analyses and experiments to explore
various settings and identify the most effective approach for
multimodal alignment.

e We demonstrate the versatility of AlignDiT by successfully
adapting it to related multimodal tasks, such as video-to-
speech and visual forced alignment.

2 Related Works

2.1 Multimodal Speech Tasks

Automated dialogue replacement (ADR). Early efforts in ADR,
also known as automated video dubbing, framed it as a multimodal
text-to-speech (TTS) problem. Neural Dubber [31] pioneered this
direction by generating speech from text conditioned on video lip
movements. Subsequent work, VisualTTS [45], integrated visual
information more explicitly into the TTS pipeline by introducing a
textual-visual attention mechanism to learn alignments between
phonemes and lip frames, as well as visual feature fusion during
acoustic decoding. VDTTS [24] extended this idea to unconstrained,
multi-speaker settings, predicting finer prosodic elements for a
more natural dubbing. More recently, HPMDubbing [15] presented
a unified architecture employing hierarchical prosody modeling. It
extracts visual features at the lip, face, and scene levels to control dif-
ferent aspects of speech (timing, energy/pitch, and global emotion),
synthesizing natural and emotional speech and setting a strong
state-of-the-art benchmark for ADR. StyleDubber [16] further fo-
cused on speaker style and pronunciation habits by introducing
two-level style learning (phoneme-level and utterance-level) using
reference audio. Both HPMDubbing and StyleDubber require ex-
plicit alignment through a forced aligner during training to ensure
accurate synchronization between video and speech.
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Figure 2: Various methods for conditioning multimodal inputs to DiT blocks: (a) channel-wise concatenation of text, reference
speech, and visual features; (b) providing the text as a prefix; and (c) conditioning text inputs through cross-attention. In (a), ¢

represents filler tokens.

Video-to-speech. Distinct from ADR, video-to-speech generates
speech directly from silent videos without transcripts. Initial meth-
ods approached this task using CNN-based [20, 38] or sequence-
to-sequence models [60] to capture lip movements and generate
speech. Recent approaches have further improved speech gen-
eration quality by incorporating advanced techniques, such as
GANSs [35, 53], normalizing flows [25, 34], and diffusion models [9,
75]. Additionally, to capture speaker characteristics, most works [11,
52] utilize speaker embeddings derived from reference audio. As
obtaining reference audio during inference is not always feasible,
several studies [9, 33, 34, 75] extract speaker information directly
from the given video to facilitate speaker-aware speech synthesis.
Visual forced alignment (VFA). VFA is a task that identifies the
timeline—specifically, the start and end times—for each word or
phoneme in silent videos based on corresponding textual content.
VFA requires accurately aligning lip movements with text. One ap-
proach employs visual keyword spotting [54, 59], a technique identi-
fying durations of individual words. Repeating this across an entire
video achieves visual forced alignment, but involves substantial
computational demands and potential inaccuracies due to overlaps
between adjacent words. Another common approach [39] utilizes
Connectionist Temporal Classification (CTC) [22], frequently em-
ployed in visual speech recognition (VSR) for video-text alignment.
DVFA [36] represents the first method explicitly designed for VFA,
leveraging a multimodal attention mechanism to effectively align
textual transcriptions with corresponding lip movements.

Our approach builds on insights from these three different lines
of work, aiming to achieve the best of each by learning cross-modal
alignment across speech, video, and text. Crucially, we avoid dedi-
cated speech-text aligners, such as those required by HPMDubbing
and StyleDubber, by learning implicit multimodal alignment. This
results in improved content accuracy and speaker similarity. Fur-
thermore, the flexibility of our multimodal alignment approach
allows it to generalize beyond ADR, effectively tackling video-to-
speech and VFA, thus demonstrating significant versatility and
broad applicability.

2.2 Text-to-speech (TTS) Synthesis

Recent research in Text-to-Speech (TTS) synthesis has achieved
significant advancements. One notable approach, autoregressive
(AR)-based TTS models [6, 32, 70], combines powerful speech to-
kenizers [17, 78] with next-token prediction language modeling
and has demonstrated promising results. Despite their high quality,
non-autoregressive (NAR) models benefit from fast inference due to
parallel processing, effectively balancing quality and latency. Specif-
ically, diffusion models [26, 68] have significantly contributed to the
success of current NAR approaches. For example, Matcha-TTS [51]
adopts conditional flow matching with optimal transport paths
(OT-CFM) [42] for training and relies on a phoneme-level duration
model for speech synthesis. DiTTo-TTS [41] improves alignment
by utilizing a Diffusion Transformer (DiT) [57] with cross-attention
conditioned on encoded text from a pretrained language model. E2
TTS [21] removes phoneme and duration predictors, directly using
characters padded with filler tokens to match the length of mel
spectrograms. Additionally, F5-TTS [8] enhances text-speech align-
ment by integrating ConvNeXt V2 [71] into a diffusion transformer
framework. In this work, we aim to extend NAR TTS models, specifi-
cally DiT, to multimodal TTS synthesis. By leveraging classifier-free
guidance and carefully designed conditioning, our approach flexi-
bly handles varying inputs—including text-only, video-only, and
multimodal scenarios—for high-quality speech synthesis.

3 AlignDiT

Our goal is to generate a speech waveform that matches the lip
movements in a video, conveys the content of a given text script,
and resembles the voice characteristics of a target speaker indi-
cated by reference speech. We employ an in-context learning-based
speech synthesis approach to handle multimodal inputs. For text-to-
speech synthesis task, various methods [8, 21, 41, 74] have explored
diverse strategies for conditioning text inputs. However, to the best
of our knowledge, no existing method simultaneously handles video
input alongside text and reference speech to achieve multimodal
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alignment for speech synthesis within in-context learning-based
generative models. We aim to explore various settings and identify
the most suitable method for multimodal alignment, capable of flex-
ibly handling both unimodal and multimodal inputs to synthesize
high-quality and accurate speech.

3.1 Model Architecture

We utilize the Diffusion Transformer (DiT) [57] for multimodal-to-
speech generation, as it has been shown to be effective for speech
generation task. Following prior works about text-to-speech [8, 40],
we train the model using a flow matching objective and generate
mel-spectrogram through an iterative inference process starting
from random noise. The model consists of multiple blocks, each
following the standard Transformer [69] architecture with self-
attention, along with additional parameters for conditioning diffu-
sion timestep information. For multimodal-to-speech generation,
we guide the generative process using a fused multimodal repre-
sentation as a condition, allowing the model to progressively refine
the noisy mel-spectrogram into a representation that aligns with
the given multimodal inputs.

3.2 Multimodal Conditioning

Audio-Video Fusion. Audio and video are naturally synchronized
modalities. When a person speaks, their lip movements correspond
closely to the acoustic features at that same moment, making frame-
by-frame fusion straightforward. However, since the frame rates
of the two modalities typically differ, we extract and encode each
modality to have a common temporal resolution. Specifically, audio
is converted into mel-spectrogram sequence hg,,4;, at 100 fps. For
video, we first extract a sequence of video features h,;4¢, using a
pretrained video encoder specialized in lip motion. To match the
frame rate, we upsample the 25 fps video features to 100 fps via
lightweight transposed convolutional layers. We then apply Con-
former [23] encoder for better capturing contextual information.
Once aligned temporally, the audio and video features are concate-
nated channel-wise to form a unified multimodal representation,
which effectively encodes when and how to speak.

To enable our model to generate speech that follows the voice
characteristics of a reference speech, we apply a binary temporal
mask M to the mel-spectrogram and train the model to inpaint the
masked regions, using (1 —M) © h,ygi0 as input. The masked spans
are randomly selected to enhance the in-context learning ability
of the model. Since requiring paired audio-video data of reference
utterance during inference is critical, we train the model to operate
with reference speech alone by applying complementary masking
to the video features. Specifically, the input becomes M © hy;je0,
allowing the model to rely on audio while ignoring the masked
video during training. This audio-video fusion can be formulated
as follows:

hav = [(1 = M) O hgyudio: M © hyigeo] € RTXZD’ (1)

where T and D denote the temporal length and the hidden dimen-
sion, respectively.

Audio-Video-Text Fusion. While the audio-video streams are
inherently time-aligned, text is only monotonically aligned with
them and lacks strict frame-level synchronization. Unlike previous
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methods that rely on text token-level duration information from
external forced aligners [49] and duration predictors [63], we aim
to train the generative model fuse the modalities naturally, without
explicit duration constraints. This simplifies the data preprocessing
pipeline, making it easier to scale the dataset, and avoids potential
biases introduced by forced alignments, thereby facilitating a more
natural audio-video-text alignment. To investigate feasible modality
fusion methods in the DiT blocks, we explore three conditioning
strategies as illustrated in Fig. 2. In all cases, for text encoding, the
character sequence is first embedded through a lookup table and
then refined by a convolutional encoder to be htex; Which has the
length of L.

(a) Early Fusion & Self-Attention: A naive approach for fusion is
concatenating all conditioning modalities along the channel axis.
To match the total length, we add filler tokens at the end of the
text sequence inspired by E2 TTS [21]. After this early fusion, the
self-attention layers in DiT blocks learn alignment naturally to
predict the masked part of mel-spectrogram. This can be expressed
as follows:

B = [havs heext] € RTXSD, 2)
h=hWg+bg e RT*D, 3)

where W, and b, are the parameters of a fully connected layer to
transform the channel dimension to D.

(b) Prefix & Self-Attention: Another approach for fusion is frame-
wise concatenation between text feature and audio-video feature,
treating the text as a prefix. This leverages in-context condition-
ing [70, 74], allowing the text prefix to guide the model within
the self-attention layers of DiT blocks. After the model outputs
the full sequence, the prefix part corresponding to the text length
is discarded, yielding the predicted mel-spectrogram. This can be
formulated as follows:

W = Concat(hsext, hap) € RUEFT)I¥2D ()

h=hW,+b, € RUEATIXD, (5)

where W, and by, are the parameters of a fully connected layer.

(c) Multimodal Cross-Attention (AlignDiT): Lastly, instead of
fusing the audio-video and text features at the input level, we de-
sign the model to gradually incorporate text information while
preserving the natural synchronization between audio and video.
To this end, we revise each DiT block by inserting a cross-attention
layer in addition to self-attention. In this setup, the audio-video
representation hg, is used as the query, while the text embedding
htext serves as the key and value in a multi-head cross-attention
mechanism as follows:

h = MHCA (haoWQ. hrext Wi, hiextWy) e RT*P. (6)

where W, Wk, and Wy are learnable projection matrices. By an-
alyzing each approach through (a)-(c) in Section 5.1, we observe
that (c) naturally aligns audio-visual features while effectively in-
corporating text features, achieving the best multimodal alignment.
Therefore, we adopt this variant in our AlignDiT model.

3.3 Training Objective

Based on the fused multimodal representations, we train our Align-
DiT with multi-task learning. First, we adopt the conditional flow
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matching (CFM) training objective, which has been proven its ef-
fectiveness in generating high-quality data samples in an efficient
manner [42]. The CFM seeks to match a probability path p; from
a tractable distribution pg to p; approximating the target distri-
bution. Given the fused multimodal representation h and a noisy
mel-spectrogram x; (t € [0, 1]), AlignDiT is trained to regress the
vector field u; with CFM objectives:

Lerm = Eip, llor(xe1h, 0) — uy (x2) 11, (7)

where 0 defines the DiT blocks and v; (x¢|h, ) denotes the estimated
vector fields with x; ~ ps(x).

Second, while the CFM loss encourages natural mel-spectrogram
generation, relying solely on the CFM loss can be insufficient for
modality alignment, as it provides only an indirect learning sig-
nal [12]. To address this, we introduce a Connectionist Temporal
Classification (CTC) [22] loss to guide the intermediate representa-
tions of DiT blocks to align more directly with the textual content.
Specifically, we attach lightweight projection heads to several in-
termediate blocks to predict the text sequence from their hidden
representations. The loss can be expressed as:

Lete = - ) log pere (text | h), ®
iel
where k' is the output of the i-th DiT block and 7 denotes the
selected layers. The CTC loss encourages the model to retain more
linguistic information, without employing external alignment mod-
ules. The total multi-task loss is defined as follows:

Liotal = Lcrm + Acte Lete 9

where Actc is a balancing hyperparameter.

3.4 Audio-only Pretraining

Generating high-quality speech and learning multimodal alignment
simultaneously can be challenging. To provide a better initialization
for AlignDiT, we employ an audio-only pretraining phase before
conditioning on video and text. The model learns to predict masked
regions of the input mel-spectrogram from unmasked context dur-
ing pretraining, and this has demonstrated its effectiveness in text-
to-speech task [43]. In addition, we follow the approach [77] that
improves convergence speed by distilling rich features into the in-
termediate layers of DiT, using a self-supervised speech model [30]
as the teacher. By allowing the model to acquire unconditional
speech generation abilities prior to multimodal conditioning, this
pretraining phase simplifies the subsequent audio-video-text fusion.
Additionally, since audio-only data is abundant compared to audio-
video-text paired data, our audio-only pretraining strategy is readily
scalable and offers a practical way to improve the performance.

3.5 Multimodal Classifier-Free Guidance

In diffusion-based generative models, classifier-free guidance [27]
is well-explored to strengthen the influence of conditioning sig-
nals during inference. This is achieved by using both conditional
and unconditional predictions from the same model to guide the
generation process as follows:

0,cFG = 0 (xt, h) + 5+ (0p(x1, B) — 01 (¢, D)), (10)

where s is guidance scale.
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Since each modality exhibits different characteristics, we hy-
pothesize that using a single guidance scale for all modalities may
be sub-optimal. To allow better control over each modality dur-
ing inference, we propose multimodal classifier-free guidance by
assigning modality-specific guidance scales:

Ut,CFG = 0 (xt, hyexts huideo)
+ Svideo * (Z)[(xt, htext, hvideo) — 0 (xt: htexts 0)) (11)
+ Stext - (0 (xz, heext, 0) — v¢(x1,0,0)),

where sexs is guidance scale for text modality and s,; 4., for video.
By adjusting s;exr and sy;4.0, We can adaptively control the focus
between modalities. Higher s;ex; encourages the model to follow
the text more closely, improving intelligibility, while higher s,;gc,
leads to better lip synchronizations.

To support CFG, we apply modality dropout during training
by randomly dropping text, video, or both. This not only enables
multimodal CFG but also improves robustness in cases where a
modality may be missing.

4 Experiments
4.1 Datasets

We train and evaluate our proposed AlignDiT on the large-scale
audio-visual dataset LRS3 [2], which contains 439 hours of English
sentence-level data sourced from TED and TEDx talk videos from
thousands of speakers. Each video segment contains unconstrained
audio-visual speech paired with an accurate transcript, making
the dataset suitable for our multimodal setting. Around 131,000
utterances are utilized for training. For evaluation, we construct
an LRS3-cross test set consisting of triplets of {reference speech,
text, silent video}, where the reference speech is from a different
utterance by the same speaker, rather than using the ground-truth
speech as the reference. This prevents the model from accessing
ground-truth speech during testing, ensuring a rigorous evaluation
without information leakage. For video-to-speech, instead of using
the provided text from the dataset, we utilize an off-the-shelf lip
reading model to extract transcripts directly from the silent videos.

4.2 Evaluation Metrics

Subjective metrics. Since our primary focus is generating natural
and synchronized speech, subjective evaluation is essential for
accurately assessing model performance [3, 48]. Thus, we conduct
human evaluations using Mean Opinion Scores (MOS) for the ADR
task along two criteria: naturalness, evaluating the overall quality
of the speech; and similarity, assessing speaker similarity between
the reference speech and synthesized speech. 20 participants rate
the randomly sampled 30 utterances using a 5-point Likert scale,
where 1 indicates “very poor” (or “very different”) and 5 indicates
“very good” (or “very similar”).

Objective metrics. We employ comprehensive objective metrics
to evaluate the synthesized speech. For both ADR and video-to-
speech tasks, we report Word Error Rate (WER) to assess content
accuracy, using Whisper-large-v3 [62] to transcribe the synthesized
speech. Speaker similarity (spkSIM) is measured by computing the
cosine similarity between speaker embeddings extracted from syn-
thesized and reference speech using a WavLM-large-based speaker
verification model [7]. Lip-sync accuracy (AVSync) between the
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Table 1: Ablation study of modality conditioning method.

Method Lcre | WER|  AVSync T spkSIM 1

(@) X 28.828 0.666 0.530
v 2.236 0.748 0.511
(b) X 5.456 0.726 0.536
v 1.917 0.745 0.519
© X 2.507 0.745 0.543
v 1.401 0.751 0.515

Table 2: Ablation study of audio-only pretraining.

Pretraining data. | WER | AVSync! spkSIM T

X 2.040 0.746 0.396
LRS3 1.720 0.750 0.503
LibriSpeech 1.401 0.751 0.515

video and synthesized speech is measured using AVHubert [66].
Specifically, we compute the cosine similarity between AVHubert
features extracted from video paired with ground-truth speech
and features extracted from video paired with synthesized speech.
This assessment has been shown in [73] to be more robust and
effective for validating audio-visual synchronization compared to
conventional lip-sync accuracy metrics based on SyncNet [14]. For
the alignment task, we evaluate alignment accuracy by compar-
ing word-level timestamps obtained from our method with ground
truth timestamps derived from original audio alignment. We report
the average absolute time error per word (in milliseconds).

4.3 Implementation Details

Data preprocessing. For audio features, we use 16 kHz mono
audio and convert it into 80 bins mel-spectrogram using a filter
size of 640, a hop size of 160, resulting in a frame rate of 100 Hz.
We utilize 25 fps video and extract visual features as follows. Face
detection is performed using RetinaFace [18], followed by facial
landmark extraction using FAN [5]. We crop the lip-centered region
based on the detected landmarks and resize it into 88 x 88. The
pretrained AV-HuBERT (Large) model [66] is utilized to extract 25
Hz visual representations, which result in a fixed 1:4 length ratio
to the audio features. For text, we represent input as a sequence of
characters. Compared to the audio features, the character sequence
generally has a shorter temporal length [64].

Architecture. The visual feature encoder is composed of two
transposed convolution layers with stride 2, followed by two Con-
former [23] encoder layers, each with embedding size of 512, 4
attention heads, and a 1024-dimensional feed-forward layer. For
the text encoder, we adopt 4 layers of ConvNeXt v2 [71] with 512-
dimensional hidden embeddings. After concatenating multimodal
features, we apply a linear layer to project the fused representa-
tion. This representation is then processed by 18 DiT blocks, each
with 768-dimensional embedding size, 12 attention heads, and a
3072-dimensional feed-forward layer.

Training. We train AlignDiT using AdamW [44] optimizer with a
warmup of 20k steps to a peak learning rate of 7.5x10 7, followed by
linearly decay. Pretraining is conducted for 500k steps on audio-only
data with a total batch size of 0.3 hours. We finetune the model for
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Table 3: Ablation study of multimodal CFG.

Stext  Svideo | WER| AVSyncT spkSIM 1

0 0 3.785 0.716 0.391
2 2 2.310 0.758 0.497
5 2 1.401 0.751 0.515
5 5 2.507 0.760 0.501

Table 4: Ablation study of input modalities.

Input mod.

text  video WER | AVSyncT spkSIM T
X v 27.820 0.674 0.486
4 X 1.769 0.270 0.501
v v 1.401 0.751 0.515

400k steps using paired audio, video, and text data with a total batch
size of 0.1 hours. Ac7c is set to 0.1 to balance the CTC loss against
the CFM loss in initial stage. The modality dropout probability is
set to 0.2 for text, video, and all modalities, respectively.
Inference. During inference, we apply Exponential Moving Av-
eraged (EMA) weights with a decay rate of 0.999 to stabilize the
model prediction. AlignDiT takes a reference speech along with its
corresponding transcript as inputs, and the total duration is deter-
mined by the input video length. For sampling, we use the Euler
ODE solver with timestep scaling based on sway sampling strategy
with a coefficient of -1, following F5-TTS [8]. To convert generated
mel spectrograms into waveforms, we employ a HiFi-GAN [37]
model trained on the LRS3 dataset.

4.4 Baseline Models

We compare AlignDiT with state-of-the-art open-source ADR sys-
tems, HPMDubbing [15] and StyleDubber [16]. To ensure a fair
comparison and improve their generalization capability, we train
these models on the LRS3 dataset [2], which is significantly larger
than the datasets originally used in their training. Additionally, we
replace the lip feature extractor in each model with AV-HuBERT
(large) [66], unifying the lip feature extractor across AlignDiT, HP-
MDubbing, and StyleDubber to purely evaluate and compare their
effectiveness under identical settings. Note that both baseline mod-
els require an explicit duration aligner during training. For video-to-
speech, we compare our method with Diff V2S [9], Intelligible [11],
and LipVoicer [75], which are specifically designed for this task.
For visual forced alignment, we compare against visual keyword
spotting methods such as KWS-Net [54] and Transpotter [59], as
well as CTC-based methods [39] and DVFA [36].

5 Results

5.1 Ablation Studies

We analyze the contribution of each AlignDiT component through
in-depth ablation studies. We conduct a series of experiments us-
ing various objective metrics, i.e. WER, AVSync, and spkSIM, and
present comprehensive findings on modality conditioning method,
audio-only pretraining, multimodal CFG, and input modalities.

Modality conditioning method. To validate the effectiveness of
the conditioning strategy of AlignDiT, we carry out a detailed anal-
ysis of alternative modality conditioning strategies. We compare
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Figure 3: We qualitatively compare mel-spectrogram visualizations of ground-truth speech and synthesized speech from the
ADR task using AlignDiT (ours) and existing methods, HPMDubbing and StyleDubber. We also provide results from unimodal
inputs, either video-only (VTS) or text-only (TTS). The text below each mel-spectrogram represents time-aligned speech
extracted using Whisper-large-v3, with red text indicating incorrectly synthesized word compared to the ground truth.

Table 5: Experimental results on LRS3-cross set. Subjective MOS results are presented with 95% confidence interval. T represents

that a higher score is better, and | denotes that a lower score is better. The best-performing result is shown in bold.

Method Subjective Objective
Naturalness T Speaker Similarity T | WER| AVSyncT spkSIM T
GT 4.13+0.13 3.96+0.14 ‘ 2.335 1.000 0.562
HPMDubbing [15] 2.37+0.14 2.43+0.16 5.382 0.750 0.287
StyleDubber [16] 1.79+0.12 2.35+0.18 3.170 0.586 0.349
Ours 3.79+0.16 3.96+0.13 1.401 0.751 0.515

three conditioning variants—(a) early fusion & self-attention, (b)
prefix & self-attention, and (c) multimodal cross-attention—and an-
alyze the impact of the CTC loss (Lctc) in each case. The results in
Table 1 confirm the strength of the proposed conditioning method
(multimodal cross-attention) which achieves the best performance
in WER, AVSync, and spkSIM.

In addition, the absence of L7 leads to consistent quality
degradation across all variants and metrics, except for a slight de-
viance in spkSIM of the (c) multimodal cross-attention. In particular,
the WER is significantly worsened in every variant, indicating that
applying Lcrc facilitates more accurate alignment learning be-
tween the input text and output speech within the DiT blocks.
Audio-only pretraining. Table 2 illustrates the benefits of audio-
only pretraining. Pretraining AlignDiT on the LRS3 dataset, which
is also used during the main training phase, shows consistent qual-
ity improvements across all evaluation metrics. Even greater im-
provements are achieved when using LibriSpeech [55], a dataset
not seen during the subsequent training. These results underscore
the benefits of leveraging diverse audio data during pretraining,
and demonstrate that the performance of AlignDiT can be readily
enhanced using easily accessible audio resources.

Multimodal CFG. In order to explore how AlignDiT benefits from
its multimodal CFG, we experiment with different values of ssext
and sy;g4eo- From the results in Table 3, we derive two key findings.
First, applying CFG (Stext = Spideo € {2, 5}) consistently improves
performance compared to not using CFG (Stext = Spideo = 0),
aligning with observations from previous works [27, 40]. More im-
portantly, leveraging the proposed multimodal CFG, i.e., adjusting
Stext and Sy; e, to balance information from each modality, further
enhances overall performance, demonstrating its effectiveness in
synthesizing more natural speech. Through analysis of optimal
guidance scales for each modality, we set Stexs = 5 and Sgexr = 2,
which achieves the best quality in terms of WER and spkSIM.

Input modalities. To examine the effect of multimodal inputs, we
compare models trained with video only, text only, and both text
and video modalities (Table 4). The WER significantly increases
when text input is omitted, highlighting the essential role of textual
information in generating accurate and intelligible speech. Exclud-
ing the video modality also degrades overall performance, partic-
ularly in terms of AVSync. In contrast, utilizing both modalities
yields speech that is not only intelligible but also well-synchronized,
underscoring the advantages of multimodal-to-speech generation.



MM °25, October 27-31, 2025, Dublin, Ireland

Table 6: Video-to-Speech benchmark.

Method | WER| AVSyncT spkSIM T
Diffv2s [9] 35.210 0.608 0.115
Intelligible [11] | 27.432 0.675 0.316
LipVoicer [75] | 21.164 0.524 0.094
Ours 19.513  0.688 0.508

5.2 Quantitative Comparison

Table 5 shows both subjective and objective evaluation results of
AlignDiT compared to baseline systems. As shown, AlignDiT con-
sistently outperforms all baselines across all evaluation metrics.
To be specific, in the subjective evaluation, our method achieves a
naturalness score of 3.79 and a speaker similarity score of 3.96, sub-
stantially surpassing the baselines by a large margin. These results
suggest that AlignDiT generates fluent speech that is perceptually
superior in both naturalness and speaker similarity.

The objective evaluation further supports the effectiveness of
AlignDiT. It achieves the lowest WER of 1.401, demonstrating its
ability to accurately synthesize the input text. It also obtains the
highest AVSync score of 0.751. This indicates AlignDiT effectively
leans audio-video temporal alignment, without depending on addi-
tional aligners or duration predictors which commonly used in the
baselines. In terms of speaker consistency, AlignDiT also achieves
the best spkSIM score, demonstrating its ability to effectively mimic
the voice characteristics of the target speaker.

5.3 Qualitative Comparison

We visually compare the mel-spectrograms converted from syn-
thesized speech produced by existing ADR methods [15, 16] and
our AlignDiT with multimodal input, alongside those from ground-
truth speech, in Fig. 3. We also include results synthesized from
unimodal inputs: video-only (VTS) and text-only (TTS). Focus-
ing on the orange and red boxes in columns 1 and 2, as well as
the transcribed speech below each mel-spectrogram, we observe
that existing methods frequently generate incorrect speech and
blurry spectrograms. In columns 3 and 4, although existing meth-
ods produce accurate speech content, they occasionally generate
unintended sounds or produce mel-spectrograms that lack details
and appear blurry. Regarding VTS and TTS, we observe consistent
results in Sec. 5.1. For VTS across all samples, since no text input is
provided, content accuracy becomes significantly unstable, leading
to incorrect speech. Conversely, TTS generates accurate speech
content across all examples due to the text input, yet the absence
of video input results in temporal misalignment compared to the
ground-truth. In contrast, our model consistently synthesizes accu-
rate speech content, exhibiting fine details in the mel-spectrogram
that closely match the ground-truth across all examples. These
results clearly demonstrate that our model effectively synthesizes
high-quality, accurate speech comparable to the ground-truth.

5.4 Applications

Our proposed AlignDiT is robust and flexible across diverse mul-
timodal scenarios. We demonstrate the versatility of our method

Jeongsoo Choi, Ji-Hoon Kim, Kim Sung-Bin, Tae-Hyun Oh, and Joon Son Chung

Table 7: Visual forced alignment benchmark.

Method

KWS-Net [54]
CTC-based [39]

| MAE| ACC?

2629ms  42.6%
124.5ms  60.6%
Transpotter [59] | 167.3ms  61.8%
DVFA [36] 97.7ms  80.2%
Ours 41.5ms 83.7%

by showing its effective generalization to related multimodal tasks,
such as video-to-speech synthesis and visual forced alignment.
Video-to-speech. Unlike ADR, video-to-speech takes silent video
(without text) as input to read lip movements and synthesize cor-
responding speech. Some prior works [9, 11] operate in textless
manner, while others, such as LipVoicer [75], leverage off-the-shelf
lip reading models to guide speech synthesis. For a fair comparison
with LipVoicer, we adopt the same lip reading model [46] to obtain
pseudo-text labels. Table 6 summarizes the performance compari-
son between our approach and existing methods. Interestingly, our
model significantly outperforms existing methods across all evalu-
ation metrics, including LipVoicer, which is specifically designed
for this task and also utilizes an expert lip reading model. This
highlights the robustness of our multimodal alignment approach,
demonstrating that it generalizes effectively and achieves superior
performance even on tasks beyond its primary design.

Visual forced alignment (VFA). Conventionally, the VFA task
involves identifying timestamps for each word or phoneme in silent
videos. Since our model can synthesize speech given silent video
and text input, we bypass direct comparison of silent video and
text, and instead leverage these inputs to generate speech signals.
We then apply the Montreal Forced Aligner [49] to align the syn-
thesized speech with the corresponding text, thus determining
timestamps of each word for VFA task. It is worth noting that we
use a single canonical reference speech across all test samples, re-
moving the need for speaker-specific references. Table 7 presents
a comparison of alignment performance on the LRS3 dataset. The
synthesized speech from our proposed AlignDiT is highly synchro-
nized with the input video, enabling precise forced alignment with
text, resulting in significantly better performance compared to ex-
isting methods [36, 39, 54, 59] specifically designed for this task.
These results support that our model generates highly accurate and
temporally synchronized speech from multimodal inputs.

6 Conclusion

We introduced AlignDiT, a unified framework for generating ac-
curate, natural, and synchronized speech from text, video, and
reference audio. Through extensive analysis, we explore various
configurations and identify the most effective strategy for aligning
multiple modalities, without the need for explicit duration modeling.
We also proposed a multimodal classifier-free guidance mechanism
that adaptively balances information across modalities. AlignDiT
achieves state-of-the-art performance across several benchmarks
and demonstrates its effectiveness in key multimodal tasks, includ-
ing video-to-speech synthesis and visual forced alignment. We
believe our findings offer valuable insights for future research in
multimodal alignment and generation.
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