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Abstract

Despite recent advances in text-to-speech (TTS) models,
audio-visual-to-audio-visual (AV2AV) translation still faces
a critical challenge: maintaining speaker consistency be-
tween the original and translated vocal and facial features.
To address this issue, we propose a conditional flow match-
ing (CFM) zero-shot audio-visual renderer that utilizes
strong dual guidance from both audio and visual modalities.
By leveraging multimodal guidance with CFM, our model
robustly preserves speaker-specific characteristics and en-
hances zero-shot AV2AV translation abilities. For the audio
modality, we enhance the CFM process by integrating ro-
bust speaker embeddings with x-vectors, which serve to bol-
ster speaker consistency. Additionally, we convey emotional
nuances to the face rendering module. The guidance pro-
vided by both audio and visual cues remains independent of
semantic or linguistic content, allowing our renderer to ef-
fectively handle zero-shot translation tasks for monolingual
speakers in different languages. We empirically demon-
strate that the inclusion of high-quality mel-spectrograms
conditioned on facial information not only enhances the
quality of the synthesized speech but also positively influ-
ences facial generation, leading to overall performance im-
provements in LSE and FID score. Our code is available at
https://github.com/Peter-SungwooCho/MAVFlow.

1. Introduction
With the rapid proliferation of multimedia content and in-
creasing cross-cultural interactions, the expansion from one
language to another has become essential to enrich user
engagement and comprehension. Traditional approaches in
language translation, such as subtitle processing via neural
machine translation (NMT) [42] or single-modality meth-
ods like speech-to-speech translation and dubbing [20], of-
ten fail to deliver a fully immersive experience. For in-
stance, in dubbed films, discrepancies between the origi-
nal visual content and the dubbed audio can lead to unnat-
ural lip synchronization and a mismatch between the ex-
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Figure 1. Overview of the existing audio-visual translation
(AV2AV) framework. Conventional AV2AV methods primarily fo-
cus on linguistic content, often neglecting crucial paralinguistic
features, such as speaker identity and emotional nuance, which are
essential for maintaining consistent speaker characteristics.

pected and dubbed voices. Such inconsistencies disrupt the
viewer’s concentration and diminish the overall experience.
The adverse effects of audio-visual incongruence on user
perception have been substantiated by the McGurk effect
[43]; notably, when the dubbed voice deviates from the ex-
pected voice of original actors, the naturalness of the con-
tent significantly deteriorates [32].

At a fundamental level, the transition from single-
modality to dual-modality translation is achievable via cas-
caded approaches. A typical pipeline involves using an au-
tomatic speech recognition (ASR) model [3, 52] to tran-
scribe the source audio into text, subsequently applying
NMT [15, 19] for language conversion, and finally syn-
thesizing speech via text-to-speech (TTS) systems [7, 8, 65]
in conjunction with talking face generation (TFG) mod-
els [49, 51, 69]. However, such cascaded methods are com-
plex and often suffer from significant information loss
due to repeated modality transformations and intermedi-
ate text representations. To overcome these challenges, di-
rect audio-visual-to-audio-visual (AV2AV) translation ap-
proaches have been introduced [12, 13, 25]. These methods
bypass textual representations by leveraging discrete units
obtained from self-supervised multimodal models (e.g.,
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multilingual AV-HuBERT [13, 55]), enabling a more direct
and efficient translation of audio-visual source inputs.

Despite these advances, the AV2AV translation still faces
a critical challenge: preserving speaker consistency (e.g.,
tone, pitch, or facial expressions) between the original and
translated audio-visual data (as shown in Figure 1). This
limitation is exacerbated by the absence of datasets wherein
the same speaker articulates identical content in multiple
languages, necessitating zero-shot strategies for speaker
preservation. Current AV2AV approaches [12, 13] adopt
a simple architecture that relies on using speaker embed-
dings, combining speaker-specific d-vectors [62] within the
speech vocoder [30, 51]. This yet underexplored structure
of AV2AV, which does not employ advanced conditional
generation techniques, still restricts its ability to maintain
speaker consistency. Moreover, generating audio and visual
components are separated, using a single-modality embed-
ding in each part. This has limitations from a multimodal
perspective since only the reference audio is used, while vi-
sual cues could also be considered for speech generation.

In this study, to preserve paralinguistic elements of
speakers during the linguistic translation, we propose
MAVFlow, a Conditional Flow Matching (CFM) [44] based
zero-shot audio-visual renderer that leverages dual guidance
from audio and visual modalities. Notably, for ideal mul-
tilingual translation scenarios, a speaker’s voice character-
istics and facial information (e.g., appearance or emotion)
must remain consistent regardless of language [1, 5, 67].
Based on this hypothesis, we adopt a guidance strategy that
utilizes speaker embeddings from audio and emotion em-
beddings from visual input. This strategy enables the com-
plementary capture of paralinguistic information, which are
commonly shared across both audio and visual modalities.

Furthermore, MAVFlow leverages the Optimal Trans-
port (OT) CFM’s structural advantages in integrating a mul-
timodal guidance. OT-CFM [44] facilitates learning a con-
ditional speech distribution, enhancing zero-shot perfor-
mances and guidance-based control, making it an ideal ap-
proach for preserving paralinguistics in AV2AV transla-
tion. MAVFlow incorporates x-vector-based speaker em-
beddings [56] of audio and facial emotion embeddings [60]
of visual inputs, directly guiding the flow matching gen-
erative module. Additionally, OT-CFM significantly im-
proves speech synthesis performance and enables more effi-
cient sampling with fewer steps. Thus, MAVFlow achieves
enhanced speaker consistency while producing seamless
audio-visual translation results in cross-lingual scenarios.
Our contributions are summarized as follows:

◦ We propose MAVFlow, integrating discrete speech units
with OT-CFM to efficiently synthesize high-quality mel-
spectrograms for advanced audio-visual translation.

◦ We transmit paralinguistic speaker characteristics from
both audio and visual modalities within the latent space

of the OT-CFM model, thereby achieving robust zero-
shot capabilities in cross-lingual scenarios.

◦ We empirically demonstrate that our dual guidance im-
proves the consistency of speaker identity in synthesized
speech by an average of 36% on the MuAViC dataset [3],
while enhancing face generation with gains in lip-sync
accuracy (+0.87) and visual quality score (−0.61) on
textless system.

◦ We also confirm that MAVFlow effectively represents
emotion in both audio and visual generation on the
CREMA-D dataset [6].

2. Related Works

2.1. Spoken Language Translation
Spoken Language Translation (SLT) aims to convert spoken
language in one language into another language, promoting
natural cross-lingual interaction. Traditional SLT typically
adopt cascaded approaches [41, 47] for speech-to-speech
translation (S2ST), chaining ASR, NMT, and TTS. Al-
though widely used, cascaded methods suffer from cumu-
lative errors, latency, and loss of speaker-specific prosodic
and paralinguistic features [27, 66]. To reduce these is-
sues, research has shifted toward end-to-end SLT methods
that translate speech directly [28, 46], and even textless ap-
proaches that eliminate the reliance on textual representa-
tions [29, 35].

Despite advances, S2ST systems primarily focus on au-
dio signals, often neglecting the alignment between trans-
lated speech and visual information, which is crucial for
cross-lingual scenarios such as video conferencing or dub-
bing. This can lead to lip-sync mismatches [32, 43], dis-
rupting realistic multimodal experiences. Speech-driven
TFG has been explored to synchronize video with trans-
lated speech [33, 64]. More recently, TransFace [12] and
AV2AV [13] jointly generate synchronized audio and vi-
sual outputs. However, achieving natural cross-lingual ex-
periences remains challenging, particularly in preserving
speaker identity and maintaining emotional consistency.

2.2. Flow Matching for Generative Modeling
Generative models based on diffusion process [23, 58]
have demonstrated remarkable performance across vari-
ous domains, including image [16, 53], speech [26, 50],
audio [10, 31], and video [4, 24], by iteratively denois-
ing to generate high-fidelity outputs. Despite their impres-
sive quality, diffusion-based models often require numerous
sampling steps, limiting their practicality for real-time or
large-scale applications. Flow matching [36, 37] models ad-
dress this limitation by learning direct stochastic paths be-
tween distributions, enabling efficient and high-quality gen-
eration in fewer steps [38]. This approach has been success-
fully applied to various tasks [18, 34, 39, 44].
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Recent works have explored conditioning flow matching
models to enable following conditions while maintaining
high-quality generation, becoming prominent in generative
modeling. Additionally, conditioning with multiple inputs
has emerged as a promising direction [45], and conditional
flow matching model successfully leverage these conditions
to produce aligned and controllable outputs [21, 63]. How-
ever, effectively extracting and utilizing relevant informa-
tion from multimodal signals for conditioning remains in
its early stages.

3. Preliminaries

3.1. Audio-Visual Speech Unit Translation
Recent advances in direct audio-visual-to-audio-visual
translation have leveraged discrete speech units to bypass
intermediate text transcription, thereby avoiding delays and
error propagation of cascaded systems and expanding ap-
plicability [12]. To obtain translated AV units, our sys-
tem follows two-stage procedure. First, we extract discrete
AV units from an input sequence using the unit extractor,
m-AVHuBERT [13], which has been pretrained on 7,000
hours of multilingual audio-visual data. Second, we pass the
extracted discrete units to a unit-to-unit (U2U) translation
module [13], which translates them into the counterparts
of target language. The translated units are subsequently
converted into intermediate features (mel-spectrograms) via
CFM, and finally transformed back into audio-visual form
through the vocoder and face decoder. Notably, both the unit
extractor and the U2U translation module are identical to
those used in our prior work [13], thus ensuring consistency
in performance.

3.2. Optimal Transport CFM
Conditional Flow Matching (CFM) is a framework that
leverages conditional flows to train generative models, par-
ticularly applied to generate mel-spectrograms in audio syn-
thesis tasks [17, 44]. Unlike conventional flow-based mod-
els, which learn a bijective mapping between a simple prior
distribution (e.g., Gaussian noise) and a mel-spectrogram
target distribution, CFM directly optimizes the trajectory
connecting the two distributions using optimal transport
(OT). This facilitates the effective generation of data distri-
butions conditioned on auxiliary information, such as text
embedding, audio-visual features, or speaker embeddings,
by learning an appropriate conditional vector field [36, 61].

In our framework, data distribution p(X) is connected
to a mel-spectrogram representations, which are connected
to a noise distribution π(X) through a continuous tra-
jectory {Xt}1t=0. Here, p(X) and π(X) denote the mel-
spectrogram data distribution (target distribution) and the
noise prior distribution, respectively. The trajectory that
continuously transforms π(X) into p(X), which is opti-

mized by OT-CFM in the sense of optimal transport. Specif-
ically, for t ∈ [0, 1],

d

dt
ϕt(X) = ν⋆t (ϕt(X), t) (1)

where ν⋆t is the optimal vector field that solves the OT prob-
lem. During training, we estimate νt(ϕt(X), t) to approxi-
mate ν⋆t . In our approach, the condition c corresponds to
audio-visual units with various guidance. Consequently, the
evolution of the data is modeled as

d

dt
ϕt(X) = νt(ϕt(X), t | c) (2)

and we train a conditional vector field νt that integrates both
audio and visual features. The OT-CFM optimization objec-
tive function is defined by

min
θ

Et,ϕt(X)|c
[
∥νt(ϕt(X), t | c)− ν⋆t (ϕt(X), t)∥2

]
(3)

where ν⋆ is approximated during training via score match-
ing or stochastic path sampling techniques.

4. MAVFlow

To effectively preserve speaker-specific characteristics such
as voice consistency and facial expressions in multilingual
audio-visual translation, we introduce MAVFlow, compris-
ing four main stages: (i) Audio-Visual Speech Unit Trans-
lation, which we have outlined in Section 3.1; (ii) Dura-
tion Length Regulator; (iii) Multimodal Guidance; and (iv)
CFM-based Zero-Shot AV-Renderer which effectively inte-
grates paralinguistic multimodal guidance with linguistic
audio-visual units to synthesize audio-visual outputs. The
overall architecture and pipeline of MAVFlow are illus-
trated in Figure 2.

4.1. Duration Length Regulator

Since the output of the U2U translation module is dedu-
plicated, it is necessary to predict and expand the dura-
tion of each unit. To achieve this, we employ a Duration
Length Regulator, adapting duration prediction concepts
previously explored in TTS synthesis specifically for our
audio-visual translation task. We adopt a similar duration
prediction structure and loss function from AV2AV [13],
using two 1D-convolution layers with a classifier, where
the objective function is the MSE loss in the log domain.
However, our Duration Length Regulator differs in that it
interpolates the generated audio to match the length of the
original source audio. This design addresses a critical con-
straint in real-world movie dubbing scenarios, where the
video length must remain consistent before and after trans-
lation—an aspect not considered in AV2AV.
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Figure 2. Overall framework and detailed architecture of MAVFlow. (a) An overview of the proposed MAVFlow translation system. (b) OT-
CFM’s Transformer decoder structure with multimodal guidance aspk and vspk,t to generate guided mel-spectrogram.

4.2. Multimodal Guidance
In the process of generating mel-spectrograms based on the
linguistic information of the AV speech unit, conventional
methods [13] relying solely on audio often fall short in ac-
curately capturing visual aspects such as the speaker’s emo-
tional state or facial expressions. Particularly in multilin-
gual audio-visual translation, preserving the speaker’s natu-
ral characteristics requires incorporating not only vocal at-
tributes but also paralinguistic elements like facial expres-
sions. To address this limitation, our approach introduces
multimodal guidance by integrating both speaker voice em-
beddings extracted from audio and speaker facial emotion
embeddings derived from visual inputs. This dual guidance
strategy enables a clearer transmission of speaker-specific
traits across both modalities, resulting in more consistent
and natural synthesis of voice and emotional expression in
multilingual translation scenarios.

Speaker voice embedding. To capture paralinguistic el-
ements from the audio modality, we use a pretrained
speaker encoder to extract x-vectors [56], which encode the
speaker’s unique timbre and speaking style. These robust
speaker embeddings are particularly suitable for our cross-
lingual scenario. Specifically, in training phase we calcu-
late x-vectors for multiple utterances from the same speaker,
then average them to form a speaker-level embedding aspk:

aspk =
1

N

N∑
i=1

autt,i (4)

where autt,i is the x-vector extracted from the i-th utterance
of a given speaker, and N is the total number of utterances
for that speaker. The use of such an averaged speaker em-
bedding allows the model to learn general speaker informa-
tion during training, thereby enabling the model to robustly
learn common speaker traits.

To guide mel-spectrogram generation using a global
speaker representation, we concatenate this speaker em-
bedding with the latent feature of each frame. This frame-
level concatenation ensures that synthesized speech con-
sistently reflects the speaker’s unique characteristics. Dur-
ing inference, we directly utilize utterance-specific embed-
ding autt,i, capturing and preserving fine-grained variations
unique to each utterance. By employing distinct speaker
embeddings for each phase, our model learns general,
global paralinguistic information during training, while ef-
fectively capturing local, utterance-specific paralinguistic
variations during inference, ultimately enhancing the qual-
ity of the generated mel-spectrograms.

Speaker facial emotion embedding. In addition to audio
cues, we incorporate paralinguistic speaker face emotional
embeddings to ensure that the model also learns from visual
characteristics of the speaker. We adopt EmoFAN [60] to
extract facial emotion embeddings from each frame. Specif-
ically, emotional information in a speaker’s utterance can
vary dynamically across frames. For instance, a speaker
may start smiling partway through an utterance or shift
emotional states over time. Thus, distinct emotion embed-
dings vspk,t are added as guidance for generating each mel-
spectrogram frame Xt:

vspk,t = Emo(ft) (5)

where vspk,t denotes the face embedding of the t-th sam-
pled frame ft, and Emo(·) is facial emotion extractor. This
reflects a distinctive aspect of the cross-lingual scenario,
where frame-level speaker audio characteristics vary ac-
cording to language-specific phonetic and prosodic differ-
ences (e.g., variations in accent, intonation patterns, rhythm,
and stress placement), whereas emotional information re-
mains consistent across languages.
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4.3. CFM-based Zero-Shot AV-Renderer
The CFM-based AV-Renderer integrates translated AV units
containing linguistic information with multimodal guid-
ance carrying paralinguistic features. The AV units utilize
interpolation to effectively synchronize audio and visual
modalities temporally. Additionally, speaker embeddings,
as global paralinguistic features, are uniformly added to
every frame to maintain consistent emotional and speaker
characteristics, while visual embeddings are applied indi-
vidually across temporal frames. This ensures both tempo-
ral and linguistic coherence, resulting in a mel-spectrogram
that naturally blends the speaker’s facial expressions with
their acoustic properties.

Guided mel generation. To effectively synthesize in-
termediate mel-spectrograms from audio-visual units,
MAVFlow incorporates multimodal information to capture
paralinguistic features, as introduced in Section 4.2. Specif-
ically, we employ CFM to guide the mel-spectrogram gen-
eration process, optimizing an objective defined as:

LOT−CFM = Et,p0(X0),q(X1)

[
ωt

(
ϕOT
t (X0, X1) | X1

)
− νt

(
ϕOT
t (X0, X1) | θ

)]
.

(6)
where ϕOT

t (X0, X1) is (1 − (1 − σ)t)X0 + tX1 and
ωt

(
ϕOT
t (X0, X1)

∣∣X1

)
is X1 − (1− σ)X0.

The multimodal embeddings consist of a global speaker
embedding aspk, uniformly applied across all frames, and a
frame-level emotion embedding vspk,t, dynamically vary-
ing per timestep. These embeddings, together with the
linguistic speech tokens {µl}1:L and the masked mel-
spectrogram X̃1, are jointly fed into the neural network Nθ

to match the conditional vector field parameterized by θ,
facilitating the integration of global speaker characteristics
and local emotional dynamics (as shown in Figure 2a).

νt
(
ϕOT
t (X0, X1) | θ

)
= Nθ

(
ϕOT
t (X0, X1), t;aspk,vspk,t, {µl}1:L, X̃1

) (7)

This strategic utilization of multimodal embeddings,
which integrates complementary global speaker identity
from audio and frame-level emotional dynamics from vi-
sual inputs, plays a crucial role in improving naturalness
and speaker consistency in multilingual audio-visual trans-
lation.

5. Experiments
5.1. Implementation Details
Dataset. For training and evaluation, we utilize
MuAViC [3], a multilingual audio-visual corpus com-
prising 1,200 hours of transcribed speech from thousands

of speakers, curated from LRS3 [2] and mTEDx [54].
We use five languages: English, Spanish, French, Italian,
and Portuguese. Since MuAViC does not contain emotion
labels, we employ an additional dataset, CREMA-D [6],
for emotion evaluation. CREMA-D consists of 7,442
short video clips featuring 91 adult actors expressing six
different emotions: anger, disgust, fear, happy, neutral, and
sad. Each clip captures an actor uttering a sentence while
simultaneously providing facial expressions and vocal
information, making it a suitable dataset for evaluating our
model’s performance on emotional maintenance.

Model description. MAVFlow uses the CFM model pre-
trained on the LibriTTS [68] as the initial point for more
efficient learning. The model is trained on 8 RTX A6000
GPUs with a constant learning rate of 0.0001. The speaker
embedding and emotional embedding extracted from each
audio and visual input—originally 192 and 256 dimensions,
respectively—are compressed to an 80-dimensional repre-
sentation and used as guidance for the OT-CFM. To con-
vert the generated mel-spectrogram into a raw audio wave-
form, we train HiFi-GAN [30] on the LRS3 dataset. We use
the same multi-scale L1 and discriminator loss functions
proposed in HiFi-GAN. For precise lip-sync and facial ex-
pression generation, we use pretrained Wav2Lip [51] on the
LRS2 [57] dataset. Details about the inference time are pro-
vided in Appendix C.

5.2. Baseline Methods
There exist only two textless systems, AV2AV [13] and
Transface [12], that directly utilize units without gener-
ating text in the intermediate process. However, our goal
is to develop a zero-shot model that generates translated
speech while maximally preserving the original speaker’s
paralinguistics. Therefore, Transface, which follows a sim-
ilar approach to AV2AV but does not incorporate additional
speaker embeddings—thus not supporting zero-shot audio
generation—was excluded from our comparison. Accord-
ingly, for reasonable performance comparison, we establish
baselines by combining existing systems in a cascaded man-
ner and compare our proposed method against them. Specif-
ically, the cascaded systems are built based on the latest off-
the-shelf pre-trained models such as AVSR [3], ASR [3],
AV2T [3], A2T [3], NMT [8], TTS [7, 8], and TFG [51].

5.3. Evaluation
Audio evaluation. We assess our model by using
speaker similarity metrics. SS (speaker similarity) lever-
ages ERes2Net [11], providing a robust measure of how
closely the synthesized speech matches the target speaker’s
identity. ERes2Net is a widely used model trained on the
VoxCeleb2 [14] dataset for speaker classification. Since
SS alone is insufficient to evaluate the temporal alignment
between generated and target mel-spectrograms, we addi-
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Table 1. Comparison of zero-shot speaker similarity scores be-
tween X-En translated speech and native speech for traditional cas-
caded systems and direct textless systems. En: English, Es: Span-
ish, Fr: French, It: Italian, Pt: Portuguese.

Method SS ↑ DTW ↓ DTW-SL ↓

(a
)E

s-
E

n

GT (Es audio) 1.0 0.0 0.0
4-Stage Cascaded Systema 0.42 11.41 17.07
3-Stage Cascaded Systemb 0.42 11.46 16.74
2-Stage Cascaded Systemc 0.07 11.23 14.18
Direct System (AV2AV) 0.35 9.96 12.94
MAVFlow (ours) 0.49 9.60 12.47

(b
)F

r-
E

n

GT (Fr audio) 1.0 0.0 0.0
4-Stage Cascaded System 0.34 10.75 17.00
3-Stage Cascaded System 0.35 10.90 16.97
2-Stage Cascaded System 0.02 10.78 13.79
Direct System (AV2AV) 0.31 9.92 12.46
MAVFlow (ours) 0.51 8.76 10.97

(c
)I

t-
E

n

GT (It audio) 1.0 0.0 0.0
4-Stage Cascaded System 0.41 11.91 17.27
3-Stage Cascaded System 0.41 11.80 16.79
2-Stage Cascaded System 0.05 11.23 13.70
Direct System (AV2AV) 0.37 10.44 14.75
MAVFlow (ours) 0.53 9.36 11.43

(d
)P

t-
E

n

GT (Pt audio) 1.0 0.0 0.0
4-Stage Cascaded System 0.36 11.12 17.89
3-Stage Cascaded System 0.35 10.97 17.65
2-Stage Cascaded System 0.11 10.89 13.72
Direct System (AV2AV) 0.30 9.82 12.38
MAVFlow (ours) 0.48 9.14 11.53

aAVSR [3] + NMT [19] + TTS [8] + TFG [51]
bAV2T [3] + TTS [8] + TFG [51]
cA2A [29] + TFG [51]

tionally adopt Mel Cepstral Distortion with Dynamic Time
Warping (MCD-DTW) [9] and its speech-length weighted
variant (MCD-DTW-SL) [9]. The SL variant further ac-
counts for speech duration, providing a more comprehen-
sive quality metric. We then examine translation quality
with the ASR-BLEU score. Specifically, an ASR system is
used to transcribe the generated audio, and the resulting text
is compared against the ground-truth transcription to calcu-
late the BLEU score [48]. Additionally, to evaluate the accu-
racy of emotion recognition, we assess the audio generated
by each system using the pretrained emotion2vec [40].

Visual evaluation. For visual quality assessment, we em-
ploy Lip Sync Error (LSE) confidence and distance (-C/-
D) [51] and Fréchet Inception Distance (FID) [22], where
the LSE metrics quantify the synchronization accuracy of
lip movements relative to the audio, while FID measures the
distributional similarity between generated frames and real
images. Additionally, to measure emotional accuracy from
the generated visual frames, we utilize a 6-class1 pretrained
MAE-DFER [59] model for emotion classification. Also,
emotion embedding cosine similarity (ES) is used to com-
plement class-wise accuracy, which may miss subtle emo-
tional variations due to its fixed set of classes.

Human evaluation. We have conducted subjective eval-
uations to capture the human perception of generated audio

1Neutral, Happy, Sad, Angry, Disgust, and Fear

Table 2. Comparison of zero-shot speaker similarity scores of gen-
erated audio for traditional cascaded systems and direct systems,
with additional emotion evaluation on the CREMA-D dataset.

Method Emo-Acc (%) ↑ SS ↑ DTW ↓ DTW-SL ↓
GT 81.95 1.0 0.0 0.0
GT Mel + Vocoder 68.41 0.76 1.75 1.75

ASR + YourTTS [7] 17.52 0.40 9.02 11.78
ASR + XTTS [8] 28.55 0.46 11.98 17.68
Direct System (AV2AV) 33.66 0.33 7.84 7.88
MAVFlow (ours) 36.46 0.39 7.30 7.36

quality. We perform a Mean Opinion Score (MOS) test that
includes two factors: MOS-Similarity, to gauge how closely
the synthesized speech resembles the target speaker’s voice,
and MOS-Naturalness, which evaluates fluency and overall
realism. We have recruited 21 participants, each rating a to-
tal of 8 audio samples per method. Our evaluation set con-
sists of four different methods: MAVFlow, a 4-stage cas-
caded system, a 3-stage cascaded system, and AV2AV. To
maintain objectivity and avoid excessive evaluations by the
assessors, the 2-stage cascaded system, which showed rela-
tively poor performance in Table 1, was excluded. Addition-
ally, since the ground truth audio is in the original language
before translation, it was excluded to ensure fairness in the
evaluation.

5.4. Zero-shot Audio Translation Result
Speaker voice similarity. In Table 1, we evaluate the
speaker similarity between the original speech and the
speech generated after translation by our model and base-
line models. As a result, MAVFlow generates the trans-
lated audio that has the highest speaker similarity score
with the original voice, compared to the cascaded system
and the baseline direct system (AV2AV). This implies that
our audio-visual guidance demonstrates outstanding per-
formance in preserving the speaker’s identity. In addition,
MAVFlow demonstrates superior performance relative to
the baseline on the MCD-DTW and MCD-DTW-SL met-
rics, confirming that the speaker’s pronunciation and tim-
bre are well maintained. In particular, since MCD-DTW-
SL also reflects duration consistency, this indicates that
our duration length regulator has been effective. These re-
sults were obtained using speech generated by translating
four source languages—Spanish, French, Italian, and Por-
tuguese—into English. In generating the final translated
speech, the speaker embedding extracted from the non-
translated original speech and the emotion embedding ex-
tracted from the face were used as guidance for the renderer.

Emotion evaluation. To evaluate how accurately the
emotion in the speech generated after translation reflects
the emotion of the original speech, we compare the pro-
posed model with the baseline model (AV2AV) using the
CREMA-D dataset. The evaluation is based on the emo-
tional accuracy calculated by the emo2vec model, which
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Table 3. Translation quality (ASR-BLEU score) for X-En transla-
tion comparison with cascaded system.

Translation X-En
Method Modality Es-En Fr-En It-En Pt-En

• 4-Stage
ASR + NMT + TTS + TFG A→AV 28.66 30.55 23.54 26.14
AVSR + NMT + TTS + TFG AV→AV 28.70 29.21 24.54 26.30
• 3-Stage
A2T + TTS + TFG A→AV 24.06 27.01 21.92 24.11
AV2T + TTS + TFG AV→AV 24.61 26.90 22.33 24.83
• 2-Stage (Textless)
A2A + TFG A→AV 26.15 30.14 22.41 23.77

• Direct (Textless)
AV2AV AV→AV 26.57 31.27 23.24 24.51
MAVFlow (ours) AV→AV 26.97 31.33 23.43 24.97

Table 4. Comparison of MOS scores between X-En translated
speech and native speech for traditional cascaded systems and di-
rect systems.

Method Similarity ↑ Naturalness ↑

4-Stage Cascaded System 2.81 3.29
3-Stage Cascaded System 2.89 3.25
Direct System (AV2AV) 3.33 3.58
MAVFlow (ours) 3.49 4.01

examines how the target speech (the synthesized speech af-
ter translation) is classified into ground-truth emotion cat-
egories. In Table 2, the emotion2vec [40] model achieves
approximately 82% classification accuracy on the ground-
truth(GT) audio, serving as an upper bound for the emo-
tion recognition model itself. In this experiment, our model
achieves 36.5% emotional accuracy (+2.8%, +7.91%, and
+18.94% compared to AV2AV, ASR + YourTTS [7], and
ASR + XTTS [8] respectively), suggesting that it success-
fully synthesizes speech that preserves emotional traits.

Translation quality. In Table 3, we evaluate the trans-
lation quality using the ASR-BLEU score for different
language pairs. The result demonstrates that MAVFlow
achieves improved translation performance compared to
AV2AV. Since we generated speech using the same unit
translation model as AV2AV, this confirms that our model
produces more accurate speech outputs when given iden-
tical units. These results suggest that our model lever-
ages the structural advantages of CFM to enhance feature
matching and rendering, thereby increasing both the ac-
curacy and consistency of the generated speech. Further-
more, MAVFlow exhibits competitive translation quality
when compared to the cascaded systems. This result im-
plies that our dual modality guidance does not impair se-
mantic quality during translation, which is also critical in
AV2AV applications, while better preserving paralinguistic
elements (as seen in Tables 1–2).

Table 5. Reconstruction visual quality performance on LRS3.

ID Method LSE-C ↑ LSE-D ↓ FID ↓

• Ground Truth
C1 GT Audio-Visual 7.63 6.89 -

• Cascaded System
C2 GT Audio + TFG 8.23 6.75 5.66
C3 GT Text + TTS + TFG 7.01 7.49 5.38
• AV2AV

C4 GT AV Speech Unit 7.43 7.30 6.30

• MAVFlow (ours)
C5 GT AV Speech Unit 8.30 6.81 5.69

Subjective evaluation. To evaluate the naturalness of the
generated speech, we assessed the MOS scores for the trans-
lated speech from the MuAViC dataset generated by each
system in Table 4. The evaluation results show that our nat-
uralness quality achieved higher MOS scores (3.49 for Sim-
ilarity, 4.01 for Naturalness) compared to other cascade sys-
tems and AV2AV (3.33 for Similarity, 3.58 for Naturalness).

5.5. Zero-shot Video Translation Result
Visual generation quality. In Table 5, we evaluated the
visual quality of the generated videos and the synchroniza-
tion between the audio and visual components. MAVFlow
achieves an LSE-C score of 8.30, outperforming all base-
line methods. Particularly, when compared to AV2AV (C4),
which has a similar direct synchronization structure to ours,
MAVFlow demonstrates significant improvements across
all metrics: LSE-C (+0.87), LSE-D (−0.49), and FID
(−0.61). These results indicate that audio-visual guidance
not only enhances the consistency of synthesized speech but
also positively affects face generation quality.

Specifically, the high LSE-C score highlights a strong
correlation between the generated audio and video, sug-
gesting that MAVFlow effectively utilized visual embed-
dings. In other words, our model successfully integrated
latent visual information from the initial stages of mel-
spectrogram generation through visual guidance. Addition-
ally, the synthesized face images, based on high-quality
mel-spectrograms, also exhibited competitive performance
in the FID metric, confirming the generation of more natural
and realistic faces.

Visual emotional quality. In Figure 3, we analyze the
generated visual quality on the CREMA-D dataset and eval-
uate whether each generated visual frame accurately reflects
the speaker’s emotion using a visual emotion recognition
model. Through this evaluation, we confirm that our pro-
posed method, which applies visual embedding at the frame
level, effectively captures the original emotional state of the
speaker over time. For instance, in Figure 3, the AV2AV
method incorrectly predicted ‘HAP’ (Happy) for an orig-
inal video labeled with ‘ANG’ (Anger). Upon examining
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Figure 3. Visual analysis of emotional representation in generated videos. By applying
speaker facial emotion embeddings at each frame, our approach enhances frame-level emo-
tional accuracy. As highlighted by the rectangular boxes, our method effectively resolves
emotion misclassification issues found in the AV2AV.

Table 6. Visual emotion recognition accu-
racy (Emo-Acc) and emotion embedding
cosine similarity (ES) measured from the
generated visual results on CREMA-D.

Method Emo-Acc (%) ↑ ES ↑

GT 76.83 1.00
AV2AV 67.20 0.87
MAVFlow (ours) 72.68 0.92

Table 7. Audio emotion accuracy and em-
bedding cosine similarity (ES) after addi-
tional training (+: additional training on
CREMA-D).

Method Emo-Acc (%) ↑ ES ↑ SS ↑

AV2AV 33.66 0.84 0.33
MAVFlow 36.46 0.86 0.39
MAVFlow + 51.46 0.90 0.49

each frame closely, it becomes clear that the video gener-
ated by AV2AV fails to adequately express the anger emo-
tion, particularly around the mouth, compared to the ground
truth video. These visual observations are further supported
by the quantitative results in Table 6, which show that
while AV2AV’s visual emotion recognition performance de-
creases compared to the ground truth, our proposed method
demonstrates better preservation not only in terms of ac-
curacy (Emo-Acc) but also in embedding similarity (ES).
Additional visual quality can be referred to in Appendix A.

5.6. Ablation Study
Additional training on emotion dataset. In Table 2, we
only trained our model on the MuAViC dataset to enable
zero-shot evaluation on the unseen CREMA-D benchmark.
However, additional training on emotion-rich audio-visual
datasets can significantly enhance emotion transfer per-
formance. In Table 7, we lightly uptrained MAVFlow on
CREMA-D training datasets (referred to as MAVFlow+),
resulting in a notable increase in Emo-Acc from 36.46%
to 51.46% as well as an improvement in ES from 0.86
to 0.90. Since MAVFlow outperformed the baselines using
only MuAViC, we expect that incorporating such emotion-
rich data would further widen this performance gap.

Effect of audio-visual guidance. We conducted an ab-
lation study to examine the effect of each modality guid-
ance on audio generation. Table 8 presents the results of
evaluating the effect of audio and visual modality guid-
ance on emotion recognition using the CREMA-D audio
dataset. Additionally, it includes the analysis of results from
translating audio in Es, Fr, It, and Pt to En using the
MuAViC dataset, based on the settings outlined in Table 1.
The SS and MCD-DTW values in Table 8 were averaged
across each language for analysis. As a result, we observed

Table 8. Ablation study for the effect of modality guidance on
CREMA-D and MuAViC translation.

CREMA-D MuAViC

Audio Visual SS ↑ Emo-Acc ↑ SS ↑ DTW ↓

✗ ✗ 0.167 28.66 0.057 10.13
✗ ✓ 0.174 26.83 0.056 10.73
✓ ✗ 0.391 35.85 0.487 7.50
✓ ✓ 0.388 36.46 0.504 7.37

that when both audio and visual guidance were provided,
speaker similarity and emotional accuracy improved. One
interesting observation is that when visual guidance is pro-
vided alone, speaker similarity slightly increases or is main-
tained (as seen in Table 8), but Emo-Acc decreases. This
suggests that visual guidance alone has a minimal effect on
maintaining emotion, and its complementary effect is max-
imized when combined with audio guidance.

6. Conclusion
In this paper, we introduced MAVFlow, a zero-shot audio-
visual translation framework utilizing Conditional Flow
Matching (CFM) to address speaker consistency challenges
inherent in existing AV2AV methods. By effectively inte-
grating paralinguistic characteristics from both audio and
visual modalities, MAVFlow significantly enhances speaker
consistency across languages without intermediate text rep-
resentations. Our method leverages discrete speech units
and dual-modal guidance to synthesize high-quality mel-
spectrograms, resulting in improved lip synchronization,
emotional accuracy, and overall visual quality. Experimen-
tal evaluations on the MuAViC and CREMA-D datasets
confirm that MAVFlow outperforms prior AV2AV methods,
establishing it as a robust and efficient solution for multilin-
gual audio-visual translation.

8



Acknowledgements
This work was supported by Institute of Information
& communications Technology Planning & Evalu-
ation (IITP) grant funded by the Korea government
(MSIT) [No. 2022-0-00641, XVoice: Multi-Modal
Voice Meta Learning], [No. RS-2024-00457882, AI
Research Hub Project], and [No. 2019-0-00075, Arti-
ficial Intelligence Graduate School Program (KAIST)].

References
[1] Prottay Kumar Adhikary, Bandaru Sugandhi, Subhojit

Ghimire, Santanu Pal, and Partha Pakray. Travid: An
end-to-end video translation framework. arXiv preprint
arXiv:2309.11338, 2023. 2

[2] Triantafyllos Afouras, Joon Son Chung, and Andrew Zisser-
man. Lrs3-ted: a large-scale dataset for visual speech recog-
nition. arXiv preprint arXiv:1809.00496, 2018. 5

[3] Mohamed Anwar, Bowen Shi, Vedanuj Goswami, Wei-Ning
Hsu, Juan Pino, and Changhan Wang. Muavic: A mul-
tilingual audio-visual corpus for robust speech recogni-
tion and robust speech-to-text translation. arXiv preprint
arXiv:2303.00628, 2023. 1, 2, 5, 6

[4] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel
Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi,
Zion English, Vikram Voleti, Adam Letts, et al. Stable
video diffusion: Scaling latent video diffusion models to
large datasets. arXiv preprint arXiv:2311.15127, 2023. 2

[5] William Brannon, Yogesh Virkar, and Brian Thompson.
Dubbing in practice: A large scale study of human localiza-
tion with insights for automatic dubbing. Transactions of
the Association for Computational Linguistics, 11:419–435,
2023. 2

[6] Houwei Cao, David G Cooper, Michael K Keutmann,
Ruben C Gur, Ani Nenkova, and Ragini Verma. Crema-d:
Crowd-sourced emotional multimodal actors dataset. IEEE
transactions on affective computing, 5(4):377–390, 2014. 2,
5

[7] Edresson Casanova, Julian Weber, Christopher D Shulby,
Arnaldo Candido Junior, Eren Gölge, and Moacir A Ponti.
Yourtts: Towards zero-shot multi-speaker tts and zero-shot
voice conversion for everyone. In International conference
on machine learning, pages 2709–2720. PMLR, 2022. 1, 5,
6, 7

[8] Edresson Casanova, Kelly Davis, Eren Gölge, Görkem
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APPENDIX

A. Qualitative Results and Analysis
In Figure 4, we present dynamic emotional changes across
frames within a single video at the first three frames from
neutral to disgust. While MAVFlow effectively captures the
emotional change of Ground Truth (GT) video from 15th
frame, reflecting the shift starting from the 14th frame.
AV2AV fails to reflect the emotion until around the 36th
frame. Additionally, overall, MAVFlow better expresses
emotions as well as the arousal level, which is indicated by
the distance of a red dot from the center. Cascaded systems
have been excluded from the comparison due to poor tem-
poral alignment and their inability to embed emotional cues
into the audio, which results in TFG output cannot reflect
emotional expressions in the video. The DTW and DTW-SL
metrics in Table 1 and Table 2, further confirm the notably
poor temporal alignment of the cascaded systems.

B. Class-Wise Emotional Analysis
B.1. Audio Emotional Results
In Table 9, we evaluate the class-wise emotion recogni-
tion accuracy of the generated audio using the pretrained
emotion2vec [40]. Compared to AV2AV, MAVFlow shows
slightly lower performance for the Sad, Disgust, and Fear
classes, while demonstrating comparable or superior re-
sults for Happy, Neutral, and Angry. Notably, MAVFlow ex-
hibits a significant advantage in the Angry class, ultimately
achieving better overall performance than AV2AV in both
Emo-Acc and ES metrics (as shown in Table 7). Further-
more, the MAVFlow + model, trained with additional emo-
tional datasets, achieves improved performance across most
emotion classes, with a substantial gain in overall Emo-Acc.

Table 9. Class-wise emotion accuracy (%) of generated audio (+:
additional training on CREMA-D).

Method Happy Sad Neutral Angry Disgust Fear Emo-Acc ↑
GT 89.29 85.00 89.17 89.29 77.86 62.14 81.95
AV2AV 30.00 22.86 80.00 28.57 30.71 16.43 33.66
MAVFlow 36.43 11.43 80.00 62.86 20.00 14.29 36.46
MAVFlow + 69.29 22.86 66.67 80.71 32.86 38.57 51.46

B.2. Visual Emotional Results
In Table 10, we evaluated class-wise visual emotion accu-
racy using pretrained MAE-DFER [59]. Also, follow MAE-
DFER, we report both Unweighted Average Recall (UAR)
and Weighted Average Recall (WAR) as evaluation metrics.
UAR calculates the average recall by treating each class
equally, which helps account for class imbalance, while
WAR weights the recall by the number of samples per class,

reflecting the actual class distribution in the dataset. As a
result, MAVFlow achieved strong performance in terms of
both UAR and WAR, particularly excelling in the angry, dis-
gust, and fear emotion classes.

C. Inference Time Comparison
MAVFlow does not rely on intermediate text representa-
tions, resulting in faster inference compared to the cascaded
system. Furthermore, it is more efficient by applying the
speed-friendly CFM module compare to diffusion model.
We compared the inference speed using one A6000 GPU,
observing processing times of 1.66s for MAVFlow, 1.22s
for AV2AV, and 1.75s for the 4-cascaded model to handle a
2.35s audio-visual input through the complete pipeline.

D. Limitation
MAVFlow currently leverages emotional embeddings only
from face and speaker embeddings from audio. However,
we believe that incorporating emotional cues from audio
(e.g., prosody, timbre, and other paralinguistic features) into
the guidance of CFM could further enhance performance.
Furthermore, since we directly adopt the unit extractor and
unit-to-unit translation modules from previous work [13],
improving semantic translation quality remains an open
challenge.
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Figure 4. Additional qualitative comparison for frame-level analysis. Each row shows GT, MAVFlow, AV2AV, and Cascade
(ASR+XTTS+TFG), respectively.

Table 10. Class-wise emotion accuracy, unweighted and weighted average recall (UAR%, WAR%), and ES of the generated visuals, all
measured with MAE-DFER (+: additional training on CREMA-D).

Method Happy Sad Neutral Angry Disgust Fear UAR WAR ES

GT 97.14 67.86 76.67 78.57 87.86 52.86 76.83 76.83 1.00

ASR+YourTTS+TFG 89.86 60.71 72.88 50.71 83.57 40.00 66.29 66.05 0.85
ASR+XTTS+TFG 94.93 55.00 72.03 72.86 85.71 31.43 68.66 68.50 0.91
AV2AV 95.00 64.29 79.17 62.14 77.14 27.14 67.48 67.20 0.87
MAVFlow 95.00 53.57 75.00 80.71 88.57 43.57 72.74 72.68 0.92
MAVFlow + 95.00 63.57 78.33 76.43 87.14 37.86 73.06 72.93 0.93
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