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Powerset encoding

from multi-label (+ threshold) to multi-class (+ argmax)
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Powerset encoding

from multi-label (+ threshold) to multi-class (+ argmax)
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Self-supervised feature extraction
wav2vec 2.0 vs HUBERT vs

Diarization error rate on DIHARD
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21% relative decrease
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Speaker embedding

from SpeechBrain ECAPA-TDNN to WeSpeaker ResNet34
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Speaker embedding

from SpeechBrain ECAPA-TDNN to WeSpeaker ResNet34
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14% relative decrease
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Final run
Single system (no ensembling)
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